Compare commits

...

5 Commits

Author SHA1 Message Date
majd.safitli 61238b88a2 ppg.cpp 2023-02-24 12:12:46 +01:00
majd.safitli 77754d23b3 ppg.cpp 2023-02-24 11:55:05 +01:00
majd.safitli a54bb1c9cb ppg.cpp 2023-02-24 11:50:56 +01:00
majd.safitli 16e5abc275 ppg.cpp 2023-02-24 10:58:14 +01:00
majd.safitli fb5cf16189 ppg.cpp 2023-02-24 10:40:50 +01:00
2 changed files with 162 additions and 1 deletions

View File

@ -1 +1,7 @@
The makeFile all: ppg
g++ ppg.o -o ppg.exe -L/usr/lib/x86_64-linux-gnu/ -lopencv_stitching -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm -lopencv_highgui -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_quality -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_shape -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres -lopencv_optflow -lopencv_surface_matching -lopencv_tracking -lopencv_datasets -lopencv_text -lopencv_dnn -lopencv_plot -lopencv_ml -lopencv_videostab -lopencv_videoio -lopencv_viz -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d -lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_imgproc -lopencv_core
ppg: ppg.cpp
g++ -c ppg.cpp -I/usr/include/opencv4
clean:
rm *.o
rm *.exe

155
ppg.cpp
View File

@ -1 +1,156 @@
//PPG Algorithm //PPG Algorithm
//Author: Adrien COMBE
//Date: 24/02/2023
#include <iostream>
#include "opencv2/opencv.hpp"
#include "opencv2/core.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/objdetect.hpp"
bool isDiscardData = true;
int DISCARD_DURATION = 5;
int BUFFER_DURATION = 15;
int countDiscard = 0;
int FPS=20;
template <typename T>
cv::Mat plotGraph(std::vector<T>& vals, int YRange[2])
{
auto it = minmax_element(vals.begin(), vals.end());
float scale = 1./ceil(*it.second - *it.first);
float bias = *it.first;
int rows = YRange[1] - YRange[0] + 1;
cv::Mat image = 255*cv::Mat::ones( rows, vals.size(), CV_8UC3 );
image.setTo(255);
for (int i = 0; i < (int)vals.size()-1; i++)
{
cv::line(image, cv::Point(i, rows - 1 - (vals[i] -
bias)*scale*YRange[1]), cv::Point(i+1, rows - 1 - (vals[i+1] -
bias)*scale*YRange[1]), cv::Scalar(255, 0, 0), 1);
}
return image;
}
int main()
{
std::cout <<"PPG algorithm"<<std::endl;
cv::VideoCapture cap;
cap.open(0);
if (!cap.isOpened())
{
std::cerr << "[ERROR] Unable to open camera!" << std::endl;
return -2;
}
cv::CascadeClassifier faceDetector;
if( !faceDetector.load("./haarcascade_frontalface_alt.xml"))
{
std::cerr << "[ERROR] Unable to load face cascade" << std::endl;
return -1;
}
std::vector<cv::Rect> faceRectangles;
bool isBufferFull = false;
int sampleIdBuffer = 0;
cv::Mat greenSignal(1, FPS*BUFFER_DURATION, CV_64F);
while (true)
{
// create a matrix to store the image from the cam
cv::Mat frame;
cv::Mat frame_grey;
//cv::Mat frame;
// wait for a new frame from camera and store it into 'frame'
cap.read(frame);
if (frame.empty())
{
std::cerr << "[ERROR] blank frame grabbed" << std::endl;
break;
}
if (isDiscardData)
{
countDiscard++;
if (countDiscard == DISCARD_DURATION*FPS)
isDiscardData = false;
}
else
{
if (faceRectangles.size()==0)
{
// convert to grayscale
cv::cvtColor(frame, frame_grey, cv::COLOR_BGR2GRAY);
faceDetector.detectMultiScale(frame_grey, faceRectangles, 1.1, 3, 0,
cv::Size(20, 20));
}
else
{
cv::rectangle(frame, faceRectangles[0], cv::Scalar(0, 0, 255), 1, 1, 0);
cv::Rect foreheadROI;
foreheadROI = faceRectangles[0];
foreheadROI.height *= 0.3;
cv::Mat frame_forehead = frame(foreheadROI);
cv::Scalar avg_forehead = mean(frame_forehead);
if (!isBufferFull)
{
greenSignal.at<double>(0, sampleIdBuffer) = avg_forehead[1] ;
sampleIdBuffer++;
if (sampleIdBuffer == FPS*BUFFER_DURATION)
{
isBufferFull = true;
}
}
else
{
std::vector<double> greenSignalNormalized;
cv::Scalar mean, stddev;
cv::meanStdDev(greenSignal, mean, stddev);
for (int l_sample=0; l_sample < FPS*BUFFER_DURATION;
l_sample++)
{
greenSignalNormalized.push_back((greenSignal.at<double>(0, l_sample) - mean[0])/stddev[0]);
}
int range[2] = {0, (int)(FPS*BUFFER_DURATION)};
cv::imshow("green", plotGraph(greenSignalNormalized,
range));
cv::Mat greenFFT;
std::vector<double> greenFFTModule;
cv::dft(greenSignalNormalized,greenFFT,cv::DFT_ROWS|cv::DFT_COMPLEX_OUTPUT);
cv::Mat planes[] =
{cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F),
cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F)};
cv::split(greenFFT, planes); // planes[0] = Re(DFT(I),
//planes[1] = Im(DFT(I))
greenFFTModule.clear();
for (int l=0; l < planes[1].cols; l++)
{
double moduleFFT = pow(planes[1].at<double>(0,l),2) +
pow(planes[0].at<double>(0,l),2);
greenFFTModule.push_back(sqrt(moduleFFT));
}
// display green FFT
std::vector<int> peak_indices;
int i;
for (i = 0; i < greenSignalNormalized.size(); i++) {
for (int j = 0; j < greenFFTModule.size(); j++) {
if (greenSignalNormalized[i] == greenFFTModule[j]) {
peak_indices.push_back(i);
}
}
}
std::cout<<"index = " << peak_indices[i] << '\n';
}
}
}
cv::imshow("Color", frame);
if (cv::waitKey(1000.0/FPS) >= 0)
break;
}
cv::putText(image, "Text in Images", text_position, FONT_HERSHEY_COMPLEX, 12,(255,255,255), 10);
}