Compare commits

...

3 Commits

Author SHA1 Message Date
Adrien COMBE 49afddcce4 Function Spectrogram 2023-03-24 09:56:54 +01:00
Adrien COMBE 85faa0607a Function FrequencySpectrum 2023-03-24 09:55:33 +01:00
Adrien COMBE f24766cebb Speech Analysis 2023-03-24 09:54:48 +01:00
3 changed files with 118 additions and 0 deletions

60
frequencySpectrum.m Normal file
View File

@ -0,0 +1,60 @@
function [power, duration] = frequencySpectrum(signal, fs, pad)
%%%%%%%%%%%%%%%%%%
%function power = frequencySpectrum(signal, fs, pad)
%
% Task: Display the power spectrum (lin and log scale) of a given signal
%
% Input:
% - signal: the input signal to process
% - fs: the sampling rate
% -pad: boolean if true, signal is padded with 0 to the next power of 2 -> FFT instead of DFT
%
% Output:
% - power: the power spectrum
%
%
% Guillaume Gibert, guillaume.gibert@ecam.fr
% 25/04/2022
%%%%%%%%%%%%%%%%%%
n = length(signal); % number of samples
if (pad)
n = 2^nextpow2(n);
end
tic
y = fft(signal, n);% compute DFT of input signal
duration = toc;
power = abs(y).^2/n; % power of the DFT
[val, ind] = max(power); % find the mx value of DFT and its index
% plots
figure;
subplot(1,3,1) % time plot
t=0:1/fs:(n-1)/fs; % time range
%pad signal with zeros
if (pad)
signal = [ signal; zeros( n-length(signal), 1)];
end
plot(t, signal)
xticks(0:0.1*fs:n*fs);
xticklabels(0:0.1:n/fs);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
subplot(1,3,2) % linear frequency plot
f = (0:n-1)*(fs/n); % frequency range
plot(f,power, 'b*'); hold on;
plot(f,power, 'r');
xlabel('Frequency (Hz)')
ylabel('Power (a.u.)')
subplot(1,3,3) % log frequency plot
plot(f,10*log10(power/power(ind)));
xlabel('Frequency (Hz)')
ylabel('Power (dB)')

38
spectrogram.m Normal file
View File

@ -0,0 +1,38 @@
function spectrogram(signal, samplingFreq, step_size, window_size)
%%%%%%%%%%%%%%%%%%%%%%%
%function spectrogram(signal, samplingFreq, step_size, window_size)
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
%
% Task: Plot the spectrogram of a given signal
%
% Inputs:
% -signal: temporal signal to analyse
% -samplingFreq: sampling frequency of the temporal signal
% -step_size: how often the power spectrum will be computed in ms
% -window_size: size of the analysing window in ms
%
% Ouput: None
%
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
% date: 14/03/2023
%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(2,1,1);
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
plot(t, signal');
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
ylabel('amplitude (norm. unit)');
subplot(2,1,2);
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
window = fix(window_size*samplingFreq/1000); % window_size ms data window
fftn = 2^nextpow2(window); % next highest power of 2
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
S = max(S, 10^(-40/10)); % clip below -40 dB.
S = min(S, 10^(-3/10)); % clip above -3 dB.
imagesc (t, f, log(S)); % display in log scale
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
xlabel('time (s)');
ylabel('frequency (Hz)');

View File

@ -2,3 +2,23 @@
% Date: 24/03/2023
% Description: Signal Processing Lab 2
pkg load signal
filename = "modulator22.wav";
[y,fs] = audioread(filename);
%TEMPORAL ANALYSIS
t = [1:1:size(y)];
plot(t,y);
title ("Temporal analysis");
%PERFORMING DFT
%%[power, duration] = frequencySpectrum(y,fs,false);
%PERFORMING FFT
%%[power2, duration2] = frequencySpectrum(y,fs,true);
%%duration
%%duration2
%SPECTOGRAM
spectrogram(y,fs,5,30);
spectrogram(y,fs,5,5);