copied the previous work directory used for this tutorial

This commit is contained in:
Adrien LASSERRE 2023-01-08 14:28:17 +01:00
parent 48562724d7
commit 69e13d6650
9 changed files with 417 additions and 0 deletions

72
buildPRM.m Normal file
View File

@ -0,0 +1,72 @@
## Author: adril <adril@LAPTOP-EJ1AIJHT>
## Created: 2022-12-06
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function buildPRM (rangeQ1Q2, nbPoints, L1, L2, MapFilename)
%
% Task:
%
% Inputs:
% - rangeQ1Q2 : range of values (in degrees) acceptable for joints Q1 and Q2
% - nbPoints : number of points required
% - L1, L2 : lengths of the links (in m)
% - MapFilename : the name of the file to be saved for the map
%
% Outputs:
% - None
%
% Adrien Lasserre (adrien.lasserre@ecam.fr) & Gwenn Durpoix-Espinasson (g.durpoix-espinasson@ecam.fr)
% 06/12/2022
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function buildPRM (rangeQ1Q2, nbPoints, L1, L2, MapFilename)
Points=zeros(1, nbPoints);
MatrixOfLinks=zeros(nbPoints, nbPoints);
alpha=[0;0];
d=[0;0];
a=[L1;L2];
jointNumber=[1;2];
for i=1:nbPoints
[q1;q2]=[rand()*(rangeQ1Q2(1,2)-rangeQ1Q2(1,1))+rangeQ1Q2(1,1);rand()*(rangeQ1Q2(2,2)-rangeQ1Q2(2,1))+rangeQ1Q2(2,1)];
theta=[q1;q2];
OutOfRange=0;
bTee=dh2ForwardKinematics(theta, d, a, alpha, jointNumber);
jTee=bTee(1:2, 4);
if (jTee(2,1)>=L1)
OutOfRange=1;
else if (jTee(2,1)<=-L1)
OutOfRange=1;
else if (abs(jTee(1,1)) <= L2 && abs(jTee(2,1)) <=L2)
OutOfRange=1;
endif
if (OutOfRange==0)
Points(i)=jTee;
MatrixOfLinks(i, i)=1;
for j=1:i
intersect=0;
if
intersect=1;
else
MatrixOfLinks(i, j)=1;
MatrixOfLinks(j,i)=1;
endif
endfor
endif
endfor
endfunction

62
create3DRotationMatrix.m Normal file
View File

@ -0,0 +1,62 @@
function rotationMatrix = create3DRotationMatrix(roll, pitch , yaw, order)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function rotationMatrix = create3DRotationMatrix(roll, pitch , yaw)
% Task: Compute the 3D rotation matrix from the values of roll, pitch, yaw angles
%
% Inputs:
% - roll: the value of the roll angle in degrees
% - pitch: the value of the pitch angle in degrees
% - yaw: the value of the yaw angle in degrees
% - order: if equal to 1, ZYX; if equal to 0, XYZ
%
% Output:
% - rotMatrix: the rotation matrix corresponding to the roll, pitch, yaw angles
%
%
% author: Guillaume Gibert, guillaume.gibert@ecam.fr
% date: 25/01/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert the input angles from degrees to radians
rollAngleInRadians = roll / 180.0 * pi;
pitchAngleInRadians = pitch / 180.0 * pi;
yawAngleInRadians = yaw / 180.0 * pi;
% ZYX or XYZ direction
switch order
case 0
thetaX = yawAngleInRadians;
thetaY = pitchAngleInRadians;
thetaZ = rollAngleInRadians;
case 1
thetaX = rollAngleInRadians;
thetaY = pitchAngleInRadians;
thetaZ = yawAngleInRadians;
otherwise
disp('[ERROR](create3DRotationMatrix)-> order value is neither 0 or 1!')
end
Rz = [cos(thetaZ) -sin(thetaZ) 0;
sin(thetaZ) cos(thetaZ) 0;
0 0 1];
Ry = [cos(thetaY) 0 sin(thetaY);
0 1 0;
-sin(thetaY) 0 cos(thetaY)];
Rx = [1 0 0;
0 cos(thetaX) -sin(thetaX);
0 sin(thetaX) cos(thetaX)];
% ZYX or XYZ direction
switch order
case 0
rotationMatrix = Rx * Ry * Rz
case 1
rotationMatrix = Rz * Ry * Rx;
otherwise
disp('[ERROR](create3DRotationMatrix)-> order value is neither 0 or 1!')
end

View File

@ -0,0 +1,39 @@
function transformationMatrix = create3DTransformationMatrix(roll, pitch, yaw, order, tX, tY, tZ)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function transformationMatrix = create3DTransformationMatrix(roll, pitch, yaw, order, tX, tY, tZ)
% Task: Create the 3D transformation matrix corresponding to roll, ptich, yaw angles and a 3D translation
%
% Inputs:
% - roll: the value of the roll angle in degrees
% - pitch: the value of the pitch angle in degrees
% - yaw: the value of the yaw angle in degrees
% - order: the order of rotation if 1 ZYX, if 0 XYZ
% - tX = the value of the translation along x in mm
% - tY = the value of the translation along y in mm
% - tZ = the value of the translation along z in mm
%
% Output:
% - transformationMatrix: the transformation matrix corresponding to roll, ptich, yaw angles and a 3D translation
%
%
% author: Guillaume Gibert, guillaume.gibert@ecam.fr
% date: 25/01/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine the rotation matrix (3 x 3)
rotationMatrix = create3DRotationMatrix(roll, pitch, yaw, order);
% create the translation part (3 x 1)
translationMatrix = [tX; tY; tZ];
% create the homogeneous coordinate part
homogeneousCoord = [0 0 0 1];
% create the transformation matrix which shape is
% ( R | t )
% --- --
% ( 0 | 1)
% with R: the rotation matrix (3x3)
% and t: the translation matrix (3x1)
transformationMatrix = [ rotationMatrix translationMatrix; homogeneousCoord];

34
createVisibilityGraph.m Normal file
View File

@ -0,0 +1,34 @@
function [nbNodes, visibilityGraph] = createVisibilityGraph(connectionMatrix, points2D)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function [nbNodes, visibilityGraph] = createVisibilityGraph(connectionMatrix, points2D)
%
% Task: Create a visibility graph from a connection matrix and a set of 2D points
%
% Inputs:
% -connectionMatrix: matrix of connection if cell is equal to 1 there is an edge between the corresponding points, cell is 0 otherwise
% -points2D: coordinates of the vertices of the graph
%
% Outputs:
% -nbNodes: the number of nodes of this graph
% -visibilityGraph: a matrix containing the distance between connected nodes
% (NaN refers to not connected nodes)
% The matrix has a size of (nbNodes+2)x(nbNodes+2)
%
% Guillaume Gibert (guillaume.gibert@ecam.fr)
% 19/03/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbNodes = size(points2D,1)-2;
visibilityGraph = NaN(nbNodes+2, nbNodes+2);
for l_row=1:size(connectionMatrix,1)
for l_col=1:size(connectionMatrix,2)
if (connectionMatrix(l_row, l_col) == 1)
% computes the distance between the 2 points
distance = sqrt( (points2D(l_row,1)-points2D(l_col,1))^2 + (points2D(l_row,2)-points2D(l_col,2))^2);
visibilityGraph(l_row, l_col) =distance;
end
end
end

46
dh2ForwardKinematics.m Normal file
View File

@ -0,0 +1,46 @@
function jTee = dh2ForwardKinematics(theta, d, a, alpha, jointNumber)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function wTee = dh2ForwardKinematics(theta, d, a, alpha, jointNumber)
% Task: Determine the 3D transformation matrix corresponding to a set of Denavit-Hartenberg parameters
%
% Inputs:
% - theta: an array of theta parameters (rotation around z in degrees)
% - d: an array of d parameters (translation along z in mm)
% - a: an array of a parameters (translation along x in mm)
% - alpha: an array of alpha parameters (rotation around x in degrees)
% - jointNumber: joint number you want to start with (>=1 && <=size(theta,1))
%
% Output:
% -jTee: the transformation matrix from the {World} reference frame to the {end-effector} reference frame
%
%
% author: Guillaume Gibert, guillaume.gibert@ecam.fr
% date: 29/01/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% checks if the arrays have the same size
if (size(theta, 1) != size(d,1) || size(theta,1) != size(a, 1) || size(theta,1) != size(alpha, 1))
disp('[ERROR](dh2ForwardKinematics)-> sizes of input arrays do not match!')
return;
end
% creates the output matrix as an identity one
jTee = eye(4);
% checks if jointNumber is in the good range [1 size(theta,1)]
if (jointNumber < 1 || jointNumber > size(theta, 1))
disp('[ERROR](dh2ForwardKinematics)-> jointNumber is out of range!')
return;
end
% loops over all the joints and create the transformation matrix as follow:
% for joint i: Trot(theta(i), z) Ttrans(d(i), z) Ttrans (a(i), x) Trot(alpha(i), x)
for l_joint=jointNumber:size(theta, 1)
% determine the transformation matrices for theta, d, a and alpha values of each joint
thetaTransformMatrix = create3DTransformationMatrix(0, 0, theta(l_joint), 1, 0, 0, 0); % Rz
dTransformMatrix = create3DTransformationMatrix(0, 0, 0, 1, 0, 0, d(l_joint)); % Tz
aTransformMatrix = create3DTransformationMatrix(0, 0, 0, 1, a(l_joint), 0, 0); % Tx
alphaTransformMatrix = create3DTransformationMatrix(alpha(l_joint), 0, 0, 1, 0, 0, 0); % Rx
jTee = jTee * thetaTransformMatrix * dTransformMatrix * aTransformMatrix *alphaTransformMatrix;
end

70
dijkstra.m Normal file
View File

@ -0,0 +1,70 @@
function [distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(nbNodes, visibilityGraph)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function [distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(nbNodes, visibilityGraph)
%
% Task: Perform the Dijkstra algorithm on a given visibility graph
%
% Inputs:
% -nbNodes: number of nodes of the graph excluding the starting and goal points
% -visibilityGraph: a matrix containing the distance between connected nodes
% (NaN refers to not connected nodes)
% The matrix has a size of (nbNodes+2)x(nbNodes+2)
%
% Outputs:
% - distanceToNode: distance between the current node and its parent
% - parentOfNode: index of the parent node for each node
% - nodeTrajectory: best trajectory
%
% Guillaume Gibert (guillaume.gibert@ecam.fr)
% 17/03/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
constantLargeDitance=10000;
visitedNodes = zeros(1, nbNodes+2);
distanceToNode = constantLargeDitance*ones(1, nbNodes+2);
distanceToNode(1) = 0;
parentOfNode = zeros(1, nbNodes+2);
fprintf('##Starting Dijkstra''s algorithm...\n')
while (sum(visitedNodes(:)==0))
thresholdDistance = constantLargeDitance+1;
for l_node=1:nbNodes+2
%l_node
if (visitedNodes(l_node)==0 && distanceToNode(l_node) < thresholdDistance)
minIndex = l_node;
thresholdDistance = distanceToNode(l_node);
end
end
fprintf('-->Visiting N%d\n', minIndex-1)
visitedNodes(minIndex) = 1;
for l_node=1:nbNodes+2
%l_node
if (l_node~=minIndex && ~isnan(visibilityGraph(minIndex, l_node)))
distance = distanceToNode(minIndex) + visibilityGraph(minIndex,l_node);
if (distance < distanceToNode(l_node))
distanceToNode(l_node) = distance;
parentOfNode(l_node) = minIndex;
end
end
end
end
fprintf('##Dijkstra''s algorithm is done!\n')
fprintf('##Results\n')
fprintf('Minimal distance to target: %d\n', distanceToNode(nbNodes+2))
nodeIndex = nbNodes+2;
nodeTrajectory = [];
while(nodeIndex~=1)
nodeIndex = parentOfNode(nodeIndex);
nodeTrajectory = [nodeTrajectory nodeIndex];
end
fprintf('S-->');
for l_node=2:length(nodeTrajectory)
fprintf('N%d-->', nodeTrajectory(length(nodeTrajectory)-(l_node-1))-1);
end
fprintf('G\n');
fprintf('########\n');

30
drawCircle.m Normal file
View File

@ -0,0 +1,30 @@
function h = drawCircle(x,y,r)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function h = drawCircle(x,y,r)
% Task: Draw a circle providing its center and radius
%
% Inputs:
% - x: the x-coordinate of the circle center (in m)
% - y: the y-coordinate of the circle center (in m)
% - r: the radius of the circle center (in m)
%
% Outputs:
% - h: a reference to the plot figure
%
%
% author: Guillaume Gibert, guillaume.gibert@ecam.fr
% date: 14/09/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% holds the previous drawing
hold on;
% generates samples in the range [0, 2pi]
th = 0:pi/50:2*pi;
% computes (x,y) samples along the circle perimeter
xunit = r * cos(th) + x;
yunit = r * sin(th) + y;
% plots the samples
h = plot(xunit, yunit, 'r');

22
inverse3DRotationMatrix.m Normal file
View File

@ -0,0 +1,22 @@
function invRotationMatrix = inverse3DRotationMatrix(rotationMatrix)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function invRotationMatrix = inverse3DRotationMatrix(rotationMatrix)
% Task: Inverse a 3D rotation matrix
%
% Inputs:
% - rotationMatrix: the rotation matrix to inverse
%
% Output:
% -invRotationMatrix: the inverse of the rotation matrix
%
%
% author: Guillaume Gibert, guillaume.gibert@ecam.fr
% date: 25/01/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% checks if the input rotation matrix has the right size
if (size(rotationMatrix, 1) != 3 || size(rotationMatrix, 2) != 3)
fprintf('[ERROR] (inverseRotationMatrix) -> the size of the input rotation matrix is not 3x3!\n');
end
invRotationMatrix = rotationMatrix';

View File

@ -0,0 +1,42 @@
function invTransformationMatrix = inverse3DTransformationMatrix(transformMatrix)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function invTransformMatrix = inverse3DTransformationMatrix(transformMatrix)
% Task: Inverse a 3D transformation matrix
%
% Inputs:
% - transformMatrix: the transform matrix to inverse
%
% Output:
% - invTransformationMatrix: the inverse of the transformation matrix
%
%
% author: Guillaume Gibert, guillaume.gibert@ecam.fr
% date: 25/01/2021
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% checks if the input transform matrix has the right size
if (size(transformMatrix, 1) != 4 || size(transformMatrix, 2) != 4)
fprintf('[ERROR] (inverseTransformationMatrix) -> the size of the input transform matrix is not 4x4!\n');
end
% retrieves the rotation matrix
rotationMatrix = transformMatrix(1:3, 1:3);
%retrieves the translation matrix
translationMatrix = transformMatrix(1:3, 4);
% inverses the rotation matrix
invRotationMatrix = inverse3DRotationMatrix(rotationMatrix);
% inverses the translation matrix
invTranslationMatrix = -invRotationMatrix * translationMatrix;
% create the inverse of the transform matrix
% ( R^-1 | -R^-1t )
% --- ----- ----- --
% ( 0 | 1)
% with R: the rotation matrix (3x3)
% and t: the translation matrix (3x1)
invTransformationMatrix = [invRotationMatrix invTranslationMatrix; 0 0 0 1];