Midterm
This commit is contained in:
commit
83f10a142a
|
|
@ -0,0 +1,10 @@
|
|||
function windowed_signal = Hamming_Windower(signal)
|
||||
% Calculate the length of the signal
|
||||
N = length(signal);
|
||||
|
||||
% Create the Hamming window
|
||||
window_function = hamming(N);
|
||||
|
||||
% Apply the Hamming window to the signal
|
||||
windowed_signal = signal .* window_function;
|
||||
end
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
% Loading the signal
|
||||
pkg load signal
|
||||
data = csvread('unknownsignal.csv');
|
||||
signal=data';
|
||||
N = length(signal); % Number of samples
|
||||
|
||||
% Plot the signal in the time domain
|
||||
t = linspace(0, (N-1)/Fs, N); % Time vector
|
||||
figure;
|
||||
plot(t, signal);
|
||||
xlabel('Time (s)');
|
||||
ylabel('Amplitude');
|
||||
title('Signal in Time Domain');
|
||||
grid on;
|
||||
|
||||
% Compute the FFT and normalize
|
||||
fft_signal = fft(signal, N);
|
||||
fft_signal_normalized = fft_signal / N;
|
||||
|
||||
% Compute the magnitude spectrum
|
||||
magnitude_spectrum = abs(fft_signal_normalized);
|
||||
|
||||
% Generate the frequency vector
|
||||
frequencies = linspace(0, Fs/2, N/2);
|
||||
|
||||
% Plot the spectrum in the frequency domain
|
||||
figure;
|
||||
plot(frequencies, magnitude_spectrum(1:N/2));
|
||||
xlabel('Frequency (Hz)');
|
||||
ylabel('Magnitude');
|
||||
title('Magnitude Spectrum of the Signal');
|
||||
grid on;
|
||||
|
|
@ -0,0 +1,72 @@
|
|||
% Load Signal
|
||||
pkg load signal
|
||||
data = csvread('unknownsignal.csv');
|
||||
signal=data';
|
||||
Fs=300
|
||||
N=length(signal)
|
||||
% Apply the Hamming Filter
|
||||
signal_Windowed = Hamming_Windower(signal);
|
||||
|
||||
% Spectral Analysis (FFT)
|
||||
% Compute the FFT of the windowed signal
|
||||
signal_Windowed_fft = fft(signal_Windowed, N);
|
||||
|
||||
% Normalize the FFT
|
||||
signal_Windowed_fft_norm = signal_Windowed_fft / N;
|
||||
|
||||
% Compute the magnitude spectrum
|
||||
magnitude_spectrum = abs(signal_Windowed_fft_norm);
|
||||
|
||||
% Generate the frequency vector
|
||||
frequencies = linspace(0, Fs/2, N/2);
|
||||
|
||||
% Plot the magnitude spectrum in the frequency domain
|
||||
figure;
|
||||
plot(frequencies, magnitude_spectrum(1:N/2));
|
||||
xlabel('Frequency (Hz)');
|
||||
ylabel('Magnitude');
|
||||
title('Magnitude Spectrum of the Windowed Signal');
|
||||
grid on;
|
||||
|
||||
|
||||
% Define the frequency range of interest
|
||||
low_freq = 27;
|
||||
high_freq = 66;
|
||||
|
||||
% Normalize the frequencies (Nyquist criterion)
|
||||
low_freq_norm = low_freq / (Fs/2);
|
||||
high_freq_norm = high_freq / (Fs/2);
|
||||
|
||||
% Design a Butterworth bandpass filter
|
||||
filter_order = 4; % can be adjusted to modify rolloff
|
||||
[b, a] = butter(filter_order, [low_freq_norm, high_freq_norm], 'bandpass');
|
||||
|
||||
% Apply the Butterworth filter to the windowed signal
|
||||
filtered_signal = filter(b, a, signal_Windowed);
|
||||
|
||||
% Plot the filtered signal in the time domain
|
||||
t = linspace(0, (N-1)/Fs, N); % Time vector
|
||||
figure;
|
||||
plot(t, filtered_signal);
|
||||
xlabel('Time (s)');
|
||||
ylabel('Amplitude');
|
||||
title('Filtered Signal in Time Domain');
|
||||
grid on;
|
||||
|
||||
% Compute the FFT of the filtered signal and normalize it
|
||||
fft_filtered_signal = fft(filtered_signal, N);
|
||||
fft_filtered_signal_normalized = fft_filtered_signal / N;
|
||||
|
||||
% Compute the magnitude spectrum
|
||||
magnitude_spectrum_filtered = abs(fft_filtered_signal_normalized);
|
||||
|
||||
% Generate the frequency vector
|
||||
frequencies = linspace(0, Fs/2, N/2);
|
||||
|
||||
% Plot the magnitude spectrum of the filtered signal in the frequency domain
|
||||
figure;
|
||||
plot(frequencies, magnitude_spectrum_filtered(1:N/2));
|
||||
xlabel('Frequency (Hz)');
|
||||
ylabel('Magnitude');
|
||||
title('Magnitude Spectrum of the Filtered Signal');
|
||||
grid on;
|
||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue