Fixed filters. Created plots for filtered compared to original outputs.
This commit is contained in:
parent
5b792182c6
commit
32d3e06436
37
iirFilter.m
37
iirFilter.m
|
|
@ -1,37 +0,0 @@
|
||||||
function [Z, P]= iirFilter(N, cutoffFreq, samplingFreq, filterType)
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
% function [Z, P] = iirFilter(N, cutoffFreq, samplingFreq, filterType)
|
|
||||||
% ex.: [Z, P] =iirFilter(6, 10, 500, 1)
|
|
||||||
%
|
|
||||||
% Task: To create and analyze an IIR low pass filter (Butterworth ror Chebychev)
|
|
||||||
%
|
|
||||||
% Inputs:
|
|
||||||
% -N: order of the filter
|
|
||||||
% -cutoffFreq: below this frequency, signal is not modified and above signal is attenuated
|
|
||||||
% -samplingFreq: sampling frequency (In Hz)
|
|
||||||
% -filterType: Butterworth if equal to 1 and Chebychev if equal to 2
|
|
||||||
%
|
|
||||||
% Outputs:
|
|
||||||
%
|
|
||||||
%
|
|
||||||
% Author: Guillaume Gibert, guillaume.gibert@ecam.fr
|
|
||||||
% Date: 09/04/2025
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
if (filterType == 1)
|
|
||||||
[b, a] = butter(N, cutoffFreq/(samplingFreq/2));
|
|
||||||
elseif (filterType == 2)
|
|
||||||
Rp = 10; % bandpass ripple of Rp dB
|
|
||||||
[b, a] = cheby1(N, Rp, cutoffFreq/(samplingFreq/2));
|
|
||||||
else
|
|
||||||
disp('Filter type is incorrect!')
|
|
||||||
return
|
|
||||||
end
|
|
||||||
|
|
||||||
[Z, P] = zeroPole(a, b, 1);
|
|
||||||
|
|
||||||
figure;
|
|
||||||
freqz(b, a, N, samplingFreq);
|
|
||||||
title('Frequency response');
|
|
||||||
grid on;
|
|
||||||
|
|
||||||
|
|
@ -35,7 +35,7 @@ title(['Temporal Variation of ', filepath]);
|
||||||
grid on;
|
grid on;
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
%Frequency Spectrum
|
%% Frequency Spectrum
|
||||||
%FFT
|
%FFT
|
||||||
tic;
|
tic;
|
||||||
[yFFT, FFT_Time]=frequencySpectrum(y,Fs, 1);
|
[yFFT, FFT_Time]=frequencySpectrum(y,Fs, 1);
|
||||||
|
|
@ -47,7 +47,7 @@ disp(DFT_Time);
|
||||||
|
|
||||||
%Modify the padding to make the change.
|
%Modify the padding to make the change.
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%% Spectrogram
|
||||||
spectrogram(y, Fs, 5,50)
|
spectrogram(y, Fs, 5,50)
|
||||||
title('Spectrogram of modulator22.wav');
|
title('Spectrogram of modulator22.wav');
|
||||||
colorbar;
|
colorbar;
|
||||||
|
|
@ -61,6 +61,7 @@ xlabel('Time (s)');
|
||||||
%F2 : 1695.8136433413672, 1550.9109531347972, 566.7831612330604,
|
%F2 : 1695.8136433413672, 1550.9109531347972, 566.7831612330604,
|
||||||
%1721.8044733141373, 1802.7920754749957, 1891.9059418088873
|
%1721.8044733141373, 1802.7920754749957, 1891.9059418088873
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%% First downsampling (Shannon-Nyquist problem)
|
||||||
desiredFreq = 4000; %in Hz
|
desiredFreq = 4000; %in Hz
|
||||||
|
|
||||||
% --- Downsampling using downsample() ---
|
% --- Downsampling using downsample() ---
|
||||||
|
|
@ -79,7 +80,14 @@ disp(['--- Downsampling using decimate() ---']);
|
||||||
disp(['New sampling frequency (decimate): ', num2str(Fs_decimated), ' Hz']);
|
disp(['New sampling frequency (decimate): ', num2str(Fs_decimated), ' Hz']);
|
||||||
disp(['Number of samples (decimate): ', num2str(length(y_decimated))]);
|
disp(['Number of samples (decimate): ', num2str(length(y_decimated))]);
|
||||||
|
|
||||||
% --- Plotting Downsampled Signals ---
|
%% --- Plotting Downsampled Signals ---
|
||||||
|
figure;
|
||||||
|
subplot(3,1,1);
|
||||||
|
plot(t, y);
|
||||||
|
xlabel('Time (seconds)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title(['Original Signal (Fs = ', num2str(Fs), ' Hz)']);
|
||||||
|
grid on;
|
||||||
t_ds = (0:length(y_downsampled_ds)-1) / Fs_downsampled_ds;
|
t_ds = (0:length(y_downsampled_ds)-1) / Fs_downsampled_ds;
|
||||||
subplot(3,1,2);
|
subplot(3,1,2);
|
||||||
plot(t_ds, y_downsampled_ds);
|
plot(t_ds, y_downsampled_ds);
|
||||||
|
|
@ -87,7 +95,6 @@ xlabel('Time (seconds)');
|
||||||
ylabel('Amplitude');
|
ylabel('Amplitude');
|
||||||
title(['Downsampled Signal (downsample, Fs = ', num2str(Fs_downsampled_ds), ' Hz)']);
|
title(['Downsampled Signal (downsample, Fs = ', num2str(Fs_downsampled_ds), ' Hz)']);
|
||||||
grid on;
|
grid on;
|
||||||
|
|
||||||
t_dec = (0:length(y_decimated)-1) / Fs_decimated;
|
t_dec = (0:length(y_decimated)-1) / Fs_decimated;
|
||||||
subplot(3,1,3);
|
subplot(3,1,3);
|
||||||
plot(t_dec, y_decimated);
|
plot(t_dec, y_decimated);
|
||||||
|
|
@ -95,20 +102,18 @@ xlabel('Time (seconds)');
|
||||||
ylabel('Amplitude');
|
ylabel('Amplitude');
|
||||||
title(['Decimated Signal (decimate, Fs = ', num2str(Fs_decimated), ' Hz)']);
|
title(['Decimated Signal (decimate, Fs = ', num2str(Fs_decimated), ' Hz)']);
|
||||||
grid on;
|
grid on;
|
||||||
|
|
||||||
%{
|
%{
|
||||||
% --- Frequency Spectrum of Downsampled Signals ---
|
%% --- Frequency Spectrum of Downsampled Signals ---
|
||||||
figure;
|
figure;
|
||||||
subplot(2,1,1);
|
subplot(2,1,1);
|
||||||
[yFFT_ds, FFT_Time_ds]=frequencySpectrum(y_downsampled_ds,Fs_downsampled_ds, 1);
|
[yFFT_ds, FFT_Time_ds]=frequencySpectrum(y_downsampled_ds,Fs_downsampled_ds, 1);
|
||||||
disp(['FFT Time (downsampled): ', num2str(FFT_Time_ds)]);
|
disp(['FFT Time (downsampled): ', num2str(FFT_Time_ds)]);
|
||||||
plot(yFFT_ds, Fs_downsampled_ds);
|
plot(yFFT_ds, Fs_downsampled_ds);
|
||||||
title('FFT of Downsampled Signal (downsample)');
|
title('FFT of Downsampled Signal (downsample)');
|
||||||
|
|
||||||
subplot(2,1,2);
|
subplot(2,1,2);
|
||||||
[yFFT_dec, FFT_Time_dec]=frequencySpectrum(y_decimated,Fs_decimated, 1);
|
[yFFT_dec, FFT_Time_dec]=frequencySpectrum(y_decimated,Fs_decimated, 1);
|
||||||
disp(['FFT Time (decimated): ', num2str(FFT_Time_dec)]);
|
disp(['FFT Time (decimated): ', num2str(FFT_Time_dec)]);
|
||||||
plot(yFFT_dec, Fs_decimated)
|
plot(yFFT_dec, Fs_decimated)
|
||||||
title('FFT of Decimated Signal (decimate)');
|
title('FFT of Decimated Signal (decimate)');
|
||||||
%}
|
%}
|
||||||
%{
|
%{
|
||||||
|
|
@ -120,7 +125,6 @@ title(['Spectrogram of Downsampled Signal (downsample, Fs = ', num2str(Fs_downsa
|
||||||
colorbar;
|
colorbar;
|
||||||
ylabel('Frequency (Hz)');
|
ylabel('Frequency (Hz)');
|
||||||
xlabel('Time (s)');
|
xlabel('Time (s)');
|
||||||
|
|
||||||
subplot(2,1,2);
|
subplot(2,1,2);
|
||||||
spectrogram(y_decimated, round(0.02*Fs_decimated), round(0.01*Fs_decimated), 512, Fs_decimated, 'yaxis');
|
spectrogram(y_decimated, round(0.02*Fs_decimated), round(0.01*Fs_decimated), 512, Fs_decimated, 'yaxis');
|
||||||
title(['Spectrogram of Decimated Signal (decimate, Fs = ', num2str(Fs_decimated), ' Hz)']);
|
title(['Spectrogram of Decimated Signal (decimate, Fs = ', num2str(Fs_decimated), ' Hz)']);
|
||||||
|
|
@ -128,15 +132,86 @@ colorbar;
|
||||||
ylabel('Frequency (Hz)');
|
ylabel('Frequency (Hz)');
|
||||||
xlabel('Time (s)');
|
xlabel('Time (s)');
|
||||||
%}
|
%}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
desiredFilterFreq = 1000;
|
||||||
|
%% --- Low-pass FIR filter ---
|
||||||
|
order_fir = 30;
|
||||||
|
normalized_cutoff_fir = desiredFilterFreq / (Fs / 2);
|
||||||
|
y_fir_coeffs = fir1(order_fir, normalized_cutoff_fir, 'low'); % 'low' specifies a low-pass filter
|
||||||
|
y_fir_filtered = filter(y_fir_coeffs, 1, y); % Apply the FIR filter
|
||||||
|
|
||||||
|
figure;
|
||||||
|
freqz(y_fir_coeffs, 1, 512, Fs); % Plot the frequency response of the FIR filter
|
||||||
|
title('Frequency Response of FIR Low-Pass Filter');
|
||||||
|
|
||||||
|
% FIR filter stability check (always stable)
|
||||||
|
disp('--- FIR Filter Stability ---');
|
||||||
|
disp('FIR filters designed using fir1 are inherently stable.');
|
||||||
|
|
||||||
|
% --- Low-pass IIR filter (Butterworth) ---
|
||||||
|
order_iir = 8;
|
||||||
|
normalized_cutoff_iir = desiredFilterFreq / (Fs / 2);
|
||||||
|
[b_iir, a_iir] = butter(order_iir, normalized_cutoff_iir, 'low'); % 'low' specifies a low-pass filter
|
||||||
|
y_iir_filtered = filter(b_iir, a_iir, y); % Apply the IIR filter
|
||||||
|
|
||||||
|
figure;
|
||||||
|
freqz(b_iir, a_iir, 512, Fs); % Plot the frequency response of the IIR filter
|
||||||
|
title('Frequency Response of IIR (Butterworth) Low-Pass Filter');
|
||||||
|
%{
|
||||||
|
% IIR filter stability check
|
||||||
|
disp('--- IIR Filter (Butterworth) Stability ---');
|
||||||
|
poles_iir = roots(a_iir);
|
||||||
|
magnitudes_iir = abs(poles_iir);
|
||||||
|
if all(magnitudes_iir < 1)
|
||||||
|
disp('The IIR (Butterworth) filter is stable (all poles are inside the unit circle).');
|
||||||
|
else
|
||||||
|
disp('The IIR (Butterworth) filter is NOT stable (some poles are outside or on the unit circle).');
|
||||||
|
disp('Poles magnitudes:');
|
||||||
|
disp(magnitudes_iir);
|
||||||
|
end
|
||||||
|
%}
|
||||||
|
|
||||||
|
%% --- Downsampling after filtering ---
|
||||||
|
downsample_factor_filtered = round(Fs / desiredFreq);
|
||||||
|
Fs_ds_filtered = Fs / downsample_factor_filtered;
|
||||||
|
%{
|
||||||
|
y_ds_fir_filtered = downsample(y_fir_filtered, downsample_factor_filtered);
|
||||||
|
disp(['--- Downsampling FIR filtered signal using downsample() ---']);
|
||||||
|
disp(['New sampling frequency (FIR filtered, downsample): ', num2str(Fs_ds_filtered), ' Hz']);
|
||||||
|
disp(['Number of samples (FIR filtered, downsample): ', num2str(length(y_ds_fir_filtered))]);
|
||||||
|
%}
|
||||||
|
y_ds_iir_filtered = downsample(y_iir_filtered, downsample_factor_filtered);
|
||||||
|
disp(['--- Downsampling IIR filtered signal using downsample() ---']);
|
||||||
|
disp(['New sampling frequency (IIR filtered, downsample): ', num2str(Fs_ds_filtered), ' Hz']);
|
||||||
|
disp(['Number of samples (IIR filtered, downsample): ', num2str(length(y_ds_iir_filtered))]);
|
||||||
|
|
||||||
|
%% Plotting the signals
|
||||||
|
% --- Comparing Output Signals ---
|
||||||
|
% Temporal Variation
|
||||||
|
figure;
|
||||||
|
subplot(3,1,1);
|
||||||
|
plot(t, y);
|
||||||
|
xlabel('Time (seconds)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title('Original Signal');
|
||||||
|
grid on;
|
||||||
|
subplot(3,1,2);
|
||||||
|
plot(t, y_fir_filtered);
|
||||||
|
xlabel('Time (seconds)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title('FIR Filtered Signal');
|
||||||
|
grid on;
|
||||||
|
subplot(3,1,3);
|
||||||
|
plot(t, y_iir_filtered);
|
||||||
|
xlabel('Time (seconds)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title('IIR Filtered Signal');
|
||||||
|
grid on;
|
||||||
|
|
||||||
% Play audios (using the audio data 'y' and its sampling rate 'Fs')
|
% Play audios (using the audio data 'y' and its sampling rate 'Fs')
|
||||||
%sound(y, Fs); % Play the original sound
|
%sound(y, Fs); % Play the original sound
|
||||||
%sound(y, Fs*2);
|
%sound(y, Fs*2);
|
||||||
%sound(y_decimated,Fs_decimated)
|
%sound(y_decimated,Fs_decimated)
|
||||||
sound(y_downsampled_ds,Fs_downsampled_ds) %Has distortion. This is because the Shannon-Nyquist criteria is not respected. Downsample() doesn't make sure the signal is filtered. Decimate does. So if need to choose, choose decimate !
|
%sound(y_downsampled_ds,Fs_downsampled_ds) %Has distortion. This is because the Shannon-Nyquist criteria is not respected. Downsample() doesn't make sure the signal is filtered. Decimate does. So if need to choose, choose decimate !
|
||||||
|
|
||||||
end
|
end
|
||||||
Loading…
Reference in New Issue