114 lines
3.7 KiB
Mathematica
114 lines
3.7 KiB
Mathematica
## Copyright (C) 2023 borie
|
|
##
|
|
## This program is free software: you can redistribute it and/or modify it
|
|
## under the terms of the GNU General Public License as published by
|
|
## the Free Software Foundation, either version 3 of the License, or
|
|
## (at your option) any later version.
|
|
##
|
|
## This program is distributed in the hope that it will be useful, but
|
|
## WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
## GNU General Public License for more details.
|
|
##
|
|
## You should have received a copy of the GNU General Public License
|
|
## along with this program. If not, see
|
|
## <https://www.gnu.org/licenses/>.
|
|
|
|
## -*- texinfo -*-
|
|
## @deftypefn {} {@var{retval} =} interGoal (@var{input1}, @var{input2})
|
|
##
|
|
## @seealso{}
|
|
## @end deftypefn
|
|
|
|
## Author: borie <borie@LAPTOP-D62TNEVS>
|
|
## Created: 2023-01-20
|
|
|
|
##function [connectionMatrixSG] = interCartesian (n, L2, gap, points, x, y, G, index2, connectionMatrixC, connectionMatrixS)
|
|
##
|
|
## Task: Implement a code that check intersections with obstacle for the ending point of
|
|
## the end effector in the C-space and fill a big matrix with
|
|
## the result obtain for point x, y and S
|
|
##
|
|
## Inputs: n
|
|
## L2, joint value
|
|
## gap, interval of sampling
|
|
## points, matrix containing joint and cartesian values
|
|
## x position of end effector in x-axis
|
|
## y position of end effector in y-axis
|
|
## G ending point (-2,0)
|
|
## index 2 of minimal value in the array computing the distance between S and other points
|
|
##
|
|
## Outputs: connectionMatrixS
|
|
##
|
|
|
|
function [connectionMatrixSG] = interGoal (n, L2, gap, points, x, y, G,index2, connectionMatrixC, connectionMatrixS)
|
|
|
|
hold on
|
|
connectionMatrixG = zeros(11,1);
|
|
connectionMatrixSG = [zeros(12,12)];
|
|
xplot_G = [];
|
|
yplot_G = [];
|
|
gap = 0.0001;
|
|
|
|
|
|
for j = index2
|
|
x_stored = points(3,j);
|
|
y_stored = points(4,j);
|
|
## texte = int2str(columns(points)); #Transform integer to string
|
|
## text(x, y, texte, 'FontSize', 23); #Display the points by apperance
|
|
|
|
if (x_stored != G(1,1))
|
|
|
|
A = (y_stored - G(2,1))/(x_stored - G(1,1));
|
|
B = G(2,1) - A *G(1,1);
|
|
Y = @(X) A*X+B;
|
|
if( abs(x_stored-G(1,1))<gap && x_stored>-L2 && x_stored<L2)
|
|
bool = 1;
|
|
connectionMatrixG (j,n) = 1;
|
|
connectionMatrixG (n,j) = 1;
|
|
break;
|
|
elseif (x_stored > G(1,1))
|
|
|
|
for(g = G(1,1):gap:x_stored)
|
|
if(-L2<g && g< L2 && -L2<Y(g) && Y(g)<L2)
|
|
bool = 1;
|
|
connectionMatrixG (j,n) = 1;
|
|
connectionMatrixG (n,j) = 1;
|
|
break;
|
|
else
|
|
bool = 0;
|
|
connectionMatrixG (j,n) = 0;
|
|
connectionMatrixG (n,j) = 0;
|
|
endif
|
|
endfor
|
|
|
|
elseif (x_stored < G(1,1))
|
|
|
|
for (g = x_stored:gap:x)
|
|
if (-L2<g && g< L2 && -L2<Y(g) && Y(g)<L2)
|
|
bool = 1;
|
|
connectionMatrixG (j,n) = 1;
|
|
connectionMatrixG (n,j) = 1;
|
|
break;
|
|
else
|
|
bool = 0;
|
|
connectionMatrixG (j,n) = 0;
|
|
connectionMatrixG (n,j) = 0;
|
|
endif
|
|
endfor
|
|
endif
|
|
if bool == 0 && connectionMatrixG(j, n) == 0 && n!=j
|
|
|
|
|
|
xplot = [G(1,1), x_stored];
|
|
yplot = [G(2,1), y_stored];
|
|
xyplot = [xplot; yplot];
|
|
plot(xplot, yplot, 'o-r', 'Color', 'r');
|
|
drawnow
|
|
endif
|
|
endif
|
|
|
|
endfor
|
|
|
|
endfunction
|