Merge branch 'estevan' into main
This commit is contained in:
commit
7ecd9426db
Binary file not shown.
|
|
@ -0,0 +1,18 @@
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
pkg load signal
|
||||||
|
[y,fs] = audioread('modulator22.wav');
|
||||||
|
sound(y, fs);
|
||||||
|
n = length(y);
|
||||||
|
t=0:1/fs:(n-1)/fs; % time range
|
||||||
|
spectrogram(y,fs,5,30);
|
||||||
|
|
||||||
|
[y, fs] = audioread('modulator22.wav');
|
||||||
|
n = 8;
|
||||||
|
Wn = 0.0453;
|
||||||
|
[b, a] = butter(n, Wn);
|
||||||
|
|
||||||
|
y = filter(b, a, y);
|
||||||
|
spectrogram(y,fs,5,30);
|
||||||
|
sound(y, fs);
|
||||||
|
audiowrite('butter.wav',y,fs);
|
||||||
Binary file not shown.
|
|
@ -0,0 +1,37 @@
|
||||||
|
function y = chanvocoder(carrier, modul, chan, numband, overlap)
|
||||||
|
% y = chanvocoder(carrier, modul, chan, numband, overlap)
|
||||||
|
% The Channel Vocoder modulates the carrier signal with the modulation signal
|
||||||
|
% chan = number of channels (e.g., 512)
|
||||||
|
% numband = number of bands (<chan) (e.g., 32)
|
||||||
|
% overlap = window overlap (e.g., 1/4)
|
||||||
|
|
||||||
|
if numband>chan, error('# bands must be < # channels'), end
|
||||||
|
[rc, cc] = size(carrier); if cc>rc, carrier = carrier'; end
|
||||||
|
[rm, cm] = size(modul); if cm>rm, modul = modul'; end
|
||||||
|
st = min(rc,cc); % stereo or mono?
|
||||||
|
if st~= min(rm,cm), error('carrier and modulator must have same number of tracks'); end
|
||||||
|
len = min(length(carrier),length(modul)); % find shortest length
|
||||||
|
carrier = carrier(1:len,1:st); % shorten carrier if needed
|
||||||
|
modul = modul(1:len,1:st); % shorten modulator if needed
|
||||||
|
L = 2*chan; % window length/FFT length
|
||||||
|
w = hanning(L); if st==2, w=[w w]; end % window/ stereo window
|
||||||
|
bands = 1:round(chan/numband):chan; % indices for frequency bands
|
||||||
|
bands(end) = chan;
|
||||||
|
y = zeros(len,st); % output vector
|
||||||
|
ii = 0;
|
||||||
|
while ii*L*overlap+L <= len
|
||||||
|
ind = round([1+ii*L*overlap:ii*L*overlap+L]);
|
||||||
|
FFTmod = fft( modul(ind,:) .* w ); % window & take FFT of modulator
|
||||||
|
FFTcar = fft( carrier(ind,:) .* w ); % window & take FFT of carrier
|
||||||
|
syn = zeros(chan,st); % place for synthesized output
|
||||||
|
for jj = 1:numband-1 % for each frequency band
|
||||||
|
b = [bands(jj):bands(jj+1)-1]; % current band
|
||||||
|
syn(b,:) = FFTcar(b,:)*diag(mean(abs(FFTmod(b,:))));
|
||||||
|
end % take product of spectra
|
||||||
|
midval = FFTmod(1+L/2,:).*FFTcar(1+L/2,:); % midpoint is special
|
||||||
|
synfull = [syn; midval; flipud( conj( syn(2:end,:) ) );]; % + and - frequencies
|
||||||
|
timsig = real( ifft(synfull) ); % invert back to time
|
||||||
|
y(ind,:) = y(ind,:) + timsig; % add back into time waveform
|
||||||
|
ii = ii+1;
|
||||||
|
end
|
||||||
|
y = 0.8*y/max(max(abs(y))); % normalize output
|
||||||
Binary file not shown.
|
|
@ -0,0 +1,14 @@
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
pkg load signal
|
||||||
|
[x, fs] = audioread('modulator22.wav');
|
||||||
|
sound(x, fs);
|
||||||
|
y = decimate(x, 5);
|
||||||
|
new_fs = fs/5;
|
||||||
|
display(new_fs);
|
||||||
|
audiowrite('decimated.wav', y, new_fs);
|
||||||
|
spectrogram(x,fs,5,30);
|
||||||
|
title('original');
|
||||||
|
spectrogram(y,fs,5,30);
|
||||||
|
title('decimato');
|
||||||
|
sound(y, new_fs);
|
||||||
|
|
@ -0,0 +1,15 @@
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
pkg load signal
|
||||||
|
[x, fs] = audioread('butter.wav');
|
||||||
|
sound(x, fs);
|
||||||
|
new_fs = fs/5;
|
||||||
|
display(new_fs);
|
||||||
|
r = fs/new_fs;
|
||||||
|
y = downsample(x, r);
|
||||||
|
audiowrite('down.wav', y, new_fs);
|
||||||
|
spectrogram(x,fs,5,30);
|
||||||
|
title('original');
|
||||||
|
spectrogram(y,fs,5,30);
|
||||||
|
title('dowsampled');
|
||||||
|
sound(y, new_fs);
|
||||||
|
|
@ -0,0 +1,19 @@
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
pkg load signal
|
||||||
|
[y,fs] = audioread('modulator22.wav');
|
||||||
|
sound(y, fs);
|
||||||
|
n = length(y);
|
||||||
|
t=0:1/fs:(n-1)/fs; % time range
|
||||||
|
spectrogram(y,fs,5,30);
|
||||||
|
|
||||||
|
[y, fs] = audioread('modulator22.wav');
|
||||||
|
n = 30;
|
||||||
|
fc = 1000/(fs/2);
|
||||||
|
w = hamming(n+1);
|
||||||
|
b = fir1(n, fc, w);
|
||||||
|
filtered_signal = filter(b, 1, y);
|
||||||
|
spectrogram(filtered_signal,fs,5,30);
|
||||||
|
sound(filtered_signal, fs);
|
||||||
|
audiowrite('FIR.wav',filtered_signal,fs);
|
||||||
|
|
||||||
|
|
@ -0,0 +1,21 @@
|
||||||
|
pkg load signal
|
||||||
|
|
||||||
|
[x, fs] = audioread('carrier22.wav');
|
||||||
|
recording_duration = 5; % in seconds % in Hz
|
||||||
|
|
||||||
|
|
||||||
|
printf('Start recording...\n');
|
||||||
|
recording = record(5, 22400);
|
||||||
|
printf('Recording finished.\n');
|
||||||
|
audiowrite('recording.wav', recording, fs);
|
||||||
|
plot(recording);
|
||||||
|
recording1= 'recording.wav';
|
||||||
|
carrierfile = 'carrier22.wav';
|
||||||
|
outfile = 'vocodedsound.wav';
|
||||||
|
|
||||||
|
[modul, sr1] = audioread(recording1);
|
||||||
|
[carrier, sr2] = audioread(carrierfile);
|
||||||
|
if sr2 ~= fs, disp('your sampling rates dont match'); end
|
||||||
|
|
||||||
|
y = chanvocoder(carrier, modul, 512, 16, 0.2);
|
||||||
|
audiowrite('outfile.wav', y, sr1);
|
||||||
|
|
@ -0,0 +1,40 @@
|
||||||
|
pkg load signal
|
||||||
|
[y,fs] = audioread('modulator22.wav');
|
||||||
|
audiowrite('outmodulator22.wav',y,fs/2);
|
||||||
|
n = length(y);
|
||||||
|
t=0:1/fs:(n-1)/fs; % time range
|
||||||
|
i=1;
|
||||||
|
ldft=[];
|
||||||
|
while (i<6)
|
||||||
|
[power,duration]=frequencySpectrum(y, fs, false);
|
||||||
|
disp(i);
|
||||||
|
disp (duration);
|
||||||
|
ldft(i)=duration;
|
||||||
|
i=i+1;
|
||||||
|
end
|
||||||
|
disp (ldft);
|
||||||
|
lfft=[];
|
||||||
|
i=1;
|
||||||
|
while (i<6)
|
||||||
|
[power,duration]=frequencySpectrum(y, fs, true);
|
||||||
|
disp(i);
|
||||||
|
disp (duration);
|
||||||
|
lfft(i)=duration;
|
||||||
|
i=i+1;
|
||||||
|
end
|
||||||
|
disp (lfft);
|
||||||
|
i=1;
|
||||||
|
ratio=[];
|
||||||
|
while (i<6)
|
||||||
|
ratio(i)=(lfft(i))/(ldft(i));
|
||||||
|
i=i+1;
|
||||||
|
end
|
||||||
|
disp('ratio');
|
||||||
|
disp(ratio);
|
||||||
|
avgratio=mean(ratio);
|
||||||
|
disp('avgratio');
|
||||||
|
disp(avgratio);
|
||||||
|
|
||||||
|
stdratio= std(ratio);
|
||||||
|
disp('stdratio');
|
||||||
|
disp(stdratio);
|
||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -0,0 +1,38 @@
|
||||||
|
function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||||
|
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
|
||||||
|
%
|
||||||
|
% Task: Plot the spectrogram of a given signal
|
||||||
|
%
|
||||||
|
% Inputs:
|
||||||
|
% -signal: temporal signal to analyse
|
||||||
|
% -samplingFreq: sampling frequency of the temporal signal
|
||||||
|
% -step_size: how often the power spectrum will be computed in ms
|
||||||
|
% -window_size: size of the analysing window in ms
|
||||||
|
%
|
||||||
|
% Ouput: None
|
||||||
|
%
|
||||||
|
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
|
||||||
|
% date: 14/03/2023
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
figure;
|
||||||
|
subplot(2,1,1);
|
||||||
|
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
|
||||||
|
plot(t, signal');
|
||||||
|
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
|
||||||
|
ylabel('amplitude (norm. unit)');
|
||||||
|
subplot(2,1,2);
|
||||||
|
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
|
||||||
|
window = fix(window_size*samplingFreq/1000); % window_size ms data window
|
||||||
|
fftn = 2^nextpow2(window); % next highest power of 2
|
||||||
|
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
|
||||||
|
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
|
||||||
|
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
|
||||||
|
S = max(S, 10^(-40/10)); % clip below -40 dB.
|
||||||
|
S = min(S, 10^(-3/10)); % clip above -3 dB.
|
||||||
|
imagesc (t, f, log(S)); % display in log scale
|
||||||
|
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
|
||||||
|
xlabel('time (s)');
|
||||||
|
ylabel('frequency (Hz)');
|
||||||
|
|
@ -3,6 +3,7 @@ pkg load signal
|
||||||
audiowrite('outmodulator22.wav',y,fs/2);
|
audiowrite('outmodulator22.wav',y,fs/2);
|
||||||
n = length(y);
|
n = length(y);
|
||||||
t=0:1/fs:(n-1)/fs; % time range
|
t=0:1/fs:(n-1)/fs; % time range
|
||||||
|
<<<<<<< HEAD
|
||||||
figure;
|
figure;
|
||||||
plot(t,y);
|
plot(t,y);
|
||||||
xlabel('time (s)');
|
xlabel('time (s)');
|
||||||
|
|
@ -11,4 +12,41 @@ ylabel('amplitude');
|
||||||
|
|
||||||
[power,duration]=frequencySpectrum(y, fs, false);
|
[power,duration]=frequencySpectrum(y, fs, false);
|
||||||
figure;
|
figure;
|
||||||
plot(duration,power);
|
plot(duration,power);
|
||||||
|
=======
|
||||||
|
i=1;
|
||||||
|
ldft=[];
|
||||||
|
while (i<6)
|
||||||
|
[power,duration]=frequencySpectrum(y, fs, false);
|
||||||
|
disp(i);
|
||||||
|
disp (duration);
|
||||||
|
ldft(i)=duration;
|
||||||
|
i=i+1;
|
||||||
|
end
|
||||||
|
disp (ldft);
|
||||||
|
lfft=[];
|
||||||
|
i=1;
|
||||||
|
while (i<6)
|
||||||
|
[power,duration]=frequencySpectrum(y, fs, true);
|
||||||
|
disp(i);
|
||||||
|
disp (duration);
|
||||||
|
lfft(i)=duration;
|
||||||
|
i=i+1;
|
||||||
|
end
|
||||||
|
disp (lfft);
|
||||||
|
i=1;
|
||||||
|
ratio=[];
|
||||||
|
while (i<6)
|
||||||
|
ratio(i)=(lfft(i))/(ldft(i));
|
||||||
|
i=i+1;
|
||||||
|
end
|
||||||
|
disp('ratio');
|
||||||
|
disp(ratio);
|
||||||
|
avgratio=mean(ratio);
|
||||||
|
disp('avgratio');
|
||||||
|
disp(avgratio);
|
||||||
|
|
||||||
|
stdratio= std(ratio);
|
||||||
|
disp('stdratio');
|
||||||
|
disp(stdratio);
|
||||||
|
>>>>>>> estevan
|
||||||
|
|
|
||||||
Binary file not shown.
|
|
@ -0,0 +1,9 @@
|
||||||
|
pkg load signal
|
||||||
|
modfile = 'modulator22.wav';
|
||||||
|
carfile = 'carrier22.wav';
|
||||||
|
outfile = 'vocodedsound.wav'
|
||||||
|
[modul, sr1] = audioread(modfile);
|
||||||
|
[carrier, sr2] = audioread(carfile);
|
||||||
|
if sr1~=sr2, disp('your sampling rates dont match'); end
|
||||||
|
y = chanvocoder(carrier, modul, 512, 16, .2);
|
||||||
|
audiowrite('outfile.wav',y,sr1)
|
||||||
Binary file not shown.
Loading…
Reference in New Issue