last commit
This commit is contained in:
parent
9c1c85441b
commit
983301bee5
180
ppg.cpp
180
ppg.cpp
|
|
@ -3,87 +3,157 @@
|
|||
#include "opencv2/videoio.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
|
||||
#define BUFFER_DURATION 30.0
|
||||
#define FPS 30.0
|
||||
#define temps 1.0
|
||||
|
||||
bool isDiscardData = true;
|
||||
int countDiscard = 0;
|
||||
bool isBufferFull = false;
|
||||
int sampleIdBuffer = 0;
|
||||
const double nyquistFreq = FPS / 2.0;
|
||||
template <typename T>
|
||||
cv::Mat plotGraph(std::vector<T>& vals, int YRange[2])
|
||||
{
|
||||
auto it = minmax_element(vals.begin(), vals.end());
|
||||
float scale = 1./ceil(*it.second - *it.first);
|
||||
float bias = *it.first;
|
||||
int rows = YRange[1] - YRange[0] + 1;
|
||||
cv::Mat image = 255*cv::Mat::ones( rows, vals.size(), CV_8UC3 );
|
||||
image.setTo(255);
|
||||
for (int i = 0; i < (int)vals.size()-1; i++)
|
||||
{
|
||||
cv::line(image,cv::Point(i,rows-1-(vals[i] - bias)*scale*YRange[1]),cv::Point(i+1,rows-1-(vals[i+1] - bias)*scale*YRange[1]), cv::Scalar(255, 0, 0), 1);
|
||||
}
|
||||
|
||||
int main() {
|
||||
std::cout << "PPG, j'adore gitbash même si avec github desktop c'est mieux" << std::endl;
|
||||
|
||||
return image;
|
||||
}
|
||||
int main(){
|
||||
|
||||
int sampleIdBuffer = 0;
|
||||
int BUFFER_DURATION= 10;
|
||||
std::cout<<"PPG, j'adore gitbash même si avec github desktop c'est mieux"<< std::endl;
|
||||
cv::VideoCapture cap;
|
||||
cap.open(0);
|
||||
if (!cap.isOpened())
|
||||
{
|
||||
std::cerr << "[ERROR] Unable to open camera!" << std::endl;
|
||||
return -2;
|
||||
}
|
||||
cv::CascadeClassifier faceDetector;
|
||||
if (!faceDetector.load("./haarcascade_frontalface_alt.xml")) {
|
||||
std::cerr << "[ERROR] Unable to load face cascade" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!cap.isOpened()) {
|
||||
std::cerr << "[ERROR] Unable to open camera!" << std::endl;
|
||||
return -2;
|
||||
}
|
||||
|
||||
while (true) {
|
||||
if (isDiscardData) {
|
||||
if( !faceDetector.load("./haarcascade_frontalface_alt.xml"))
|
||||
{
|
||||
std::cerr << "[ERROR] Unable to load face cascade" << std::endl;
|
||||
return -1;
|
||||
};
|
||||
cv::Mat greenSignal(1, FPS*BUFFER_DURATION, CV_64F);
|
||||
while (true)
|
||||
{
|
||||
if (cv::waitKey(1000.0/FPS) >= 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
if (isDiscardData)
|
||||
{
|
||||
countDiscard++;
|
||||
std::cout << "countDiscard = " << countDiscard << std::endl;
|
||||
if (countDiscard == temps*FPS) {
|
||||
isDiscardData = false;
|
||||
}
|
||||
} else {
|
||||
std::cout <<"countDiscard= " << countDiscard<< std::endl;
|
||||
if (countDiscard == 1*FPS)
|
||||
|
||||
isDiscardData = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
// create a matrix to store the image from the cam
|
||||
cv::Mat frame;
|
||||
cv::Mat frame, frame_gray;
|
||||
bool isBufferFull = false;
|
||||
// wait for a new frame from camera and store it into 'frame'
|
||||
cap.read(frame);
|
||||
// check if we succeeded
|
||||
if (frame.empty()) {
|
||||
if (frame.empty())
|
||||
{
|
||||
std::cerr << "[ERROR] blank frame grabbed" << std::endl;
|
||||
break;
|
||||
}
|
||||
|
||||
cv::Mat frame_gray;
|
||||
cv::cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY);
|
||||
std::vector<cv::Rect> faceRectangles;
|
||||
faceDetector.detectMultiScale(frame_gray, faceRectangles, 1.1, 3, 0, cv::Size(20, 20));
|
||||
cv::rectangle(frame, faceRectangles[0], cv::Scalar(255, 0, 0), 2);
|
||||
cv::Rect foreheadROI = faceRectangles[0];
|
||||
cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY);
|
||||
faceDetector.detectMultiScale(frame_gray, faceRectangles, 1.1, 3, 0, cv::Size(20, 20));
|
||||
cv::rectangle(frame, faceRectangles[0], cv::Scalar(0, 0, 255), 1, 1, 0);
|
||||
cv::Rect foreheadROI;
|
||||
foreheadROI = faceRectangles[0];
|
||||
foreheadROI.height *= 0.3;
|
||||
cv::rectangle(frame, foreheadROI, cv::Scalar(0, 255, 0), 2);
|
||||
cv::imshow("Color", frame);
|
||||
cv::Mat frame_forehead = frame(foreheadROI);
|
||||
cv::Scalar avg_forehead = mean(frame_forehead);
|
||||
cv::Mat greenSignal(1, FPS*BUFFER_DURATION, CV_64F);
|
||||
|
||||
|
||||
if (!isBufferFull)
|
||||
{
|
||||
greenSignal.at<double>(0, sampleIdBuffer) = avg_forehead[1] ;
|
||||
sampleIdBuffer++;
|
||||
if (sampleIdBuffer == FPS*BUFFER_DURATION)
|
||||
{
|
||||
isBufferFull = true;
|
||||
}
|
||||
std::vector<double> greenSignalNormalized;
|
||||
cv::Scalar mean, stddev;
|
||||
cv::meanStdDev(greenSignal, mean, stddev);
|
||||
for (int l_sample=0; l_sample < FPS*BUFFER_DURATION; l_sample++)
|
||||
{
|
||||
greenSignalNormalized.push_back((greenSignal.at<double>(0, l_sample) -mean[0])/stddev[0]);
|
||||
}
|
||||
}
|
||||
sampleIdBuffer++;
|
||||
std::cout << "BUFFER" << sampleIdBuffer << std::endl;
|
||||
if (sampleIdBuffer == FPS*BUFFER_DURATION)
|
||||
{
|
||||
isBufferFull = true;
|
||||
sampleIdBuffer=0;
|
||||
std::vector<double> greenSignalNormalized;
|
||||
cv::Scalar mean, stddev;
|
||||
cv::meanStdDev(greenSignal, mean, stddev);
|
||||
for (int l_sample=0; l_sample < FPS*BUFFER_DURATION; l_sample++)
|
||||
{
|
||||
greenSignalNormalized.push_back((greenSignal.at<double>(0, l_sample) - mean[0])/stddev[0]);
|
||||
}
|
||||
int range[2] = {0, (int)(FPS*BUFFER_DURATION)};
|
||||
cv::imshow("green", plotGraph(greenSignalNormalized, range));
|
||||
cv::Mat greenFFT;
|
||||
std::vector<double> greenFFTModule;
|
||||
cv::dft(greenSignalNormalized,greenFFT,cv::DFT_ROWS|cv::DFT_COMPLEX_OUTPUT);
|
||||
cv::Mat planes[] = {cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F), cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F)};
|
||||
cv::split(greenFFT, planes);
|
||||
greenFFTModule.clear();
|
||||
for (int l=0; l < planes[1].cols; l++)
|
||||
{double moduleFFT = pow(planes[1].at<double>(0,l),2) + pow(planes[0].at<double>(0,l),2);
|
||||
greenFFTModule.push_back(sqrt(moduleFFT));
|
||||
}
|
||||
cv::imshow("FFT module green", plotGraph(greenFFTModule, range));
|
||||
|
||||
// Find the peaks in the green signal in the frequency range of 0 to 4 Hz
|
||||
std::vector<int> peakLocs;
|
||||
double Fs = FPS;
|
||||
double df = Fs/greenSignalNormalized.size(); // Frequency resolution
|
||||
int fStart = 0; // Index of first frequency component that corresponds to 0 Hz
|
||||
int fEnd = (int) (3/df); // Index of last frequency component that corresponds to 4 Hz
|
||||
for (int i = fStart + 1; i < fEnd - 1; i++) {
|
||||
if (greenFFTModule[i] > greenFFTModule[i-1] && greenFFTModule[i] > greenFFTModule[i+1]) {
|
||||
peakLocs.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate heart rate based on peak locations
|
||||
double sumIntervals = 0.0;
|
||||
|
||||
for (int i = 1; i < peakLocs.size(); i++) {
|
||||
sumIntervals += (peakLocs[i] - peakLocs[i-1]) / FPS;
|
||||
}
|
||||
std::cout << "sum interval: " << sumIntervals << std::endl;
|
||||
std::cout << "pealocksize: " << peakLocs.size() << std::endl;
|
||||
double meanInterval = sumIntervals / (peakLocs.size() - 1);
|
||||
std::cout << "mean interval: " << meanInterval << std::endl;
|
||||
double heartRate = (60.0 / meanInterval);
|
||||
std::cout << "Heart rate (no findPeaks): " << heartRate << " bpm" << std::endl;
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
cv::rectangle(frame, foreheadROI, cv::Scalar(0, 255, 0), 2);
|
||||
cv::imshow("Color", frame);
|
||||
|
||||
}
|
||||
|
||||
if (cv::waitKey(1000.0/FPS) >= 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue