#include #include "opencv2/opencv.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" #define FPS 30.0 bool isDiscardData = true; int countDiscard = 0; const double nyquistFreq = FPS / 2.0; template cv::Mat plotGraph(std::vector& vals, int YRange[2]) { auto it = minmax_element(vals.begin(), vals.end()); float scale = 1./ceil(*it.second - *it.first); float bias = *it.first; int rows = YRange[1] - YRange[0] + 1; cv::Mat image = 255*cv::Mat::ones( rows, vals.size(), CV_8UC3 ); image.setTo(255); for (int i = 0; i < (int)vals.size()-1; i++) { cv::line(image,cv::Point(i,rows-1-(vals[i] - bias)*scale*YRange[1]),cv::Point(i+1,rows-1-(vals[i+1] - bias)*scale*YRange[1]), cv::Scalar(255, 0, 0), 1); } return image; } int main(){ int sampleIdBuffer = 0; int BUFFER_DURATION= 10; std::cout<<"PPG, j'adore gitbash même si avec github desktop c'est mieux"<< std::endl; cv::VideoCapture cap; cap.open(0); if (!cap.isOpened()) { std::cerr << "[ERROR] Unable to open camera!" << std::endl; return -2; } cv::CascadeClassifier faceDetector; if( !faceDetector.load("./haarcascade_frontalface_alt.xml")) { std::cerr << "[ERROR] Unable to load face cascade" << std::endl; return -1; }; cv::Mat greenSignal(1, FPS*BUFFER_DURATION, CV_64F); while (true) { if (cv::waitKey(1000.0/FPS) >= 0) { break; } if (isDiscardData) { countDiscard++; std::cout <<"countDiscard= " << countDiscard<< std::endl; if (countDiscard == 1*FPS) isDiscardData = false; } else { // create a matrix to store the image from the cam cv::Mat frame, frame_gray; bool isBufferFull = false; // wait for a new frame from camera and store it into 'frame' cap.read(frame); // check if we succeeded if (frame.empty()) { std::cerr << "[ERROR] blank frame grabbed" << std::endl; break; } std::vector faceRectangles; cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY); faceDetector.detectMultiScale(frame_gray, faceRectangles, 1.1, 3, 0, cv::Size(20, 20)); cv::rectangle(frame, faceRectangles[0], cv::Scalar(0, 0, 255), 1, 1, 0); cv::Rect foreheadROI; foreheadROI = faceRectangles[0]; foreheadROI.height *= 0.3; cv::Mat frame_forehead = frame(foreheadROI); cv::Scalar avg_forehead = mean(frame_forehead); if (!isBufferFull) { greenSignal.at(0, sampleIdBuffer) = avg_forehead[1] ; sampleIdBuffer++; std::cout << "BUFFER" << sampleIdBuffer << std::endl; if (sampleIdBuffer == FPS*BUFFER_DURATION) { isBufferFull = true; sampleIdBuffer=0; std::vector greenSignalNormalized; cv::Scalar mean, stddev; cv::meanStdDev(greenSignal, mean, stddev); for (int l_sample=0; l_sample < FPS*BUFFER_DURATION; l_sample++) { greenSignalNormalized.push_back((greenSignal.at(0, l_sample) - mean[0])/stddev[0]); } int range[2] = {0, (int)(FPS*BUFFER_DURATION)}; cv::imshow("green", plotGraph(greenSignalNormalized, range)); cv::Mat greenFFT; std::vector greenFFTModule; cv::dft(greenSignalNormalized,greenFFT,cv::DFT_ROWS|cv::DFT_COMPLEX_OUTPUT); cv::Mat planes[] = {cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F), cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F)}; cv::split(greenFFT, planes); greenFFTModule.clear(); for (int l=0; l < planes[1].cols; l++) {double moduleFFT = pow(planes[1].at(0,l),2) + pow(planes[0].at(0,l),2); greenFFTModule.push_back(sqrt(moduleFFT)); } cv::imshow("FFT module green", plotGraph(greenFFTModule, range)); // Find the peaks in the green signal in the frequency range of 0 to 4 Hz std::vector peakLocs; double Fs = FPS; double df = Fs/greenSignalNormalized.size(); // Frequency resolution int fStart = 0; // Index of first frequency component that corresponds to 0 Hz int fEnd = (int) (3/df); // Index of last frequency component that corresponds to 4 Hz for (int i = fStart + 1; i < fEnd - 1; i++) { if (greenFFTModule[i] > greenFFTModule[i-1] && greenFFTModule[i] > greenFFTModule[i+1]) { peakLocs.push_back(i); } } // Calculate heart rate based on peak locations double sumIntervals = 0.0; for (int i = 1; i < peakLocs.size(); i++) { sumIntervals += (peakLocs[i] - peakLocs[i-1]) / FPS; } std::cout << "sum interval: " << sumIntervals << std::endl; std::cout << "pealocksize: " << peakLocs.size() << std::endl; double meanInterval = sumIntervals / (peakLocs.size() - 1); std::cout << "mean interval: " << meanInterval << std::endl; double heartRate = (60.0 / meanInterval); std::cout << "Heart rate (no findPeaks): " << heartRate << " bpm" << std::endl; } } cv::rectangle(frame, foreheadROI, cv::Scalar(0, 255, 0), 2); cv::imshow("Color", frame); } } return 0; }