Nice code
This commit is contained in:
parent
717f708f4a
commit
2376b82eb4
|
|
@ -0,0 +1,44 @@
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
clc
|
||||||
|
pkg load signal
|
||||||
|
|
||||||
|
% Read the csv file
|
||||||
|
signal = csvread('unknownsignal.csv');
|
||||||
|
|
||||||
|
Fs = 300; % Sampling frequency
|
||||||
|
t = (0:length(signal)-1)/Fs;
|
||||||
|
N = length(signal);
|
||||||
|
duration = N / Fs;
|
||||||
|
% Plot the time-domain signal
|
||||||
|
figure;
|
||||||
|
plot(t, signal);
|
||||||
|
xlabel('Time (s)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title('Time-Domain Signal');
|
||||||
|
window = hann(N)';
|
||||||
|
windowed_data = window .* signal;
|
||||||
|
a=size(windowed_data);
|
||||||
|
display(a);
|
||||||
|
% Perform spectral analysis using the spectrogram with specified parameters:
|
||||||
|
|
||||||
|
|
||||||
|
[power,duration]=frequencySpectrum(signal, Fs, false);
|
||||||
|
% Calculate the spectrogram
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% Design a Butterworth bandpass filter
|
||||||
|
[b,a] = butter(3,0.4);
|
||||||
|
y = filter(b, a, windowed_data);
|
||||||
|
% Apply the filter to the signal
|
||||||
|
spectrogram(y,Fs,5,30);
|
||||||
|
|
||||||
|
% Visualize the filtered signal in the time domain:
|
||||||
|
figure;
|
||||||
|
plot(t, filtered_signal);
|
||||||
|
xlabel('Time (s)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title('Filtered Signal (30-40 Hz)');
|
||||||
|
|
||||||
|
|
@ -0,0 +1,60 @@
|
||||||
|
function [power, duration] = frequencySpectrum(signal, fs, pad)
|
||||||
|
%%%%%%%%%%%%%%%%%%
|
||||||
|
%function power = frequencySpectrum(signal, fs, pad)
|
||||||
|
%
|
||||||
|
% Task: Display the power spectrum (lin and log scale) of a given signal
|
||||||
|
%
|
||||||
|
% Input:
|
||||||
|
% - signal: the input signal to process
|
||||||
|
% - fs: the sampling rate
|
||||||
|
% -pad: boolean if true, signal is padded with 0 to the next power of 2 -> FFT instead of DFT
|
||||||
|
%
|
||||||
|
% Output:
|
||||||
|
% - power: the power spectrum
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% Guillaume Gibert, guillaume.gibert@ecam.fr
|
||||||
|
% 25/04/2022
|
||||||
|
%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
n = length(signal); % number of samples
|
||||||
|
|
||||||
|
if (pad)
|
||||||
|
n = 2^nextpow2(n);
|
||||||
|
end
|
||||||
|
|
||||||
|
tic
|
||||||
|
y = fft(signal, n);% compute DFT of input signal
|
||||||
|
duration = toc;
|
||||||
|
|
||||||
|
power = abs(y).^2/n; % power of the DFT
|
||||||
|
|
||||||
|
[val, ind] = max(power); % find the mx value of DFT and its index
|
||||||
|
|
||||||
|
% plots
|
||||||
|
figure;
|
||||||
|
|
||||||
|
subplot(1,3,1) % time plot
|
||||||
|
t=0:1/fs:(n-1)/fs; % time range
|
||||||
|
%pad signal with zeros
|
||||||
|
if (pad)
|
||||||
|
signal = [ signal; zeros( n-length(signal), 1)];
|
||||||
|
end
|
||||||
|
plot(t, signal)
|
||||||
|
xticks(0:0.1*fs:n*fs);
|
||||||
|
xticklabels(0:0.1:n/fs);
|
||||||
|
xlabel('Time (s)');
|
||||||
|
ylabel('Amplitude (a.u.)');
|
||||||
|
|
||||||
|
subplot(1,3,2) % linear frequency plot
|
||||||
|
f = (0:n-1)*(fs/n); % frequency range
|
||||||
|
plot(f,power, 'b*'); hold on;
|
||||||
|
plot(f,power, 'r');
|
||||||
|
xlabel('Frequency (Hz)')
|
||||||
|
ylabel('Power (a.u.)')
|
||||||
|
|
||||||
|
subplot(1,3,3) % log frequency plot
|
||||||
|
plot(f,10*log10(power/power(ind)));
|
||||||
|
xlabel('Frequency (Hz)')
|
||||||
|
ylabel('Power (dB)')
|
||||||
|
|
||||||
|
|
@ -0,0 +1,42 @@
|
||||||
|
clc
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
pkg load signal
|
||||||
|
|
||||||
|
signal = csvread('unknownsignal.csv');
|
||||||
|
Fs=300;
|
||||||
|
N = length(signal);
|
||||||
|
t = 0:1/Fs:(N-1)/Fs;
|
||||||
|
rectwin = rectwin(N);
|
||||||
|
figure;
|
||||||
|
plot(t,signal.*rectwin);
|
||||||
|
xlabel('Time (s)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title('Unknown Signal in Time Domain');
|
||||||
|
|
||||||
|
hammingwin = @hamming(N);
|
||||||
|
signal_hamming = signal.*hammingwin;
|
||||||
|
signal_fft = abs(fft(signal_hamming)/N).^2;
|
||||||
|
f = Fs*(0:N-1)/N;
|
||||||
|
figure;
|
||||||
|
plot(f,signal_fft);
|
||||||
|
xlabel('Frequency (Hz)');
|
||||||
|
ylabel('Power Spectral Density (dB/Hz)');
|
||||||
|
title('Power Spectral Density of Unknown Signal');
|
||||||
|
|
||||||
|
Wn = [30 40]/(Fs/2);
|
||||||
|
[b,a] = butter(4,Wn,'bandpass');
|
||||||
|
signal_filtered = filter(b,a,signal);
|
||||||
|
figure;
|
||||||
|
plot(t,signal_filtered.*rectwin);
|
||||||
|
xlabel('Time (s)');
|
||||||
|
ylabel('Amplitude');
|
||||||
|
title('Filtered Signal in Time Domain');
|
||||||
|
|
||||||
|
signal_filtered_hamming = signal_filtered.*hammingwin;
|
||||||
|
signal_filtered_fft = abs(fft(signal_filtered_hamming)/N).^2;
|
||||||
|
figure;
|
||||||
|
plot(f,signal_filtered_fft);
|
||||||
|
xlabel('Frequency (Hz)');
|
||||||
|
ylabel('Power Spectral Density (dB/Hz)');
|
||||||
|
title('Power Spectral Density of Filtered Signal');
|
||||||
|
|
@ -0,0 +1,38 @@
|
||||||
|
function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||||
|
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
|
||||||
|
%
|
||||||
|
% Task: Plot the spectrogram of a given signal
|
||||||
|
%
|
||||||
|
% Inputs:
|
||||||
|
% -signal: temporal signal to analyse
|
||||||
|
% -samplingFreq: sampling frequency of the temporal signal
|
||||||
|
% -step_size: how often the power spectrum will be computed in ms
|
||||||
|
% -window_size: size of the analysing window in ms
|
||||||
|
%
|
||||||
|
% Ouput: None
|
||||||
|
%
|
||||||
|
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
|
||||||
|
% date: 14/03/2023
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
figure;
|
||||||
|
subplot(2,1,1);
|
||||||
|
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
|
||||||
|
plot(t, signal');
|
||||||
|
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
|
||||||
|
ylabel('amplitude (norm. unit)');
|
||||||
|
subplot(2,1,2);
|
||||||
|
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
|
||||||
|
window = fix(window_size*samplingFreq/1000); % window_size ms data window
|
||||||
|
fftn = 2^nextpow2(window); % next highest power of 2
|
||||||
|
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
|
||||||
|
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
|
||||||
|
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
|
||||||
|
S = max(S, 10^(-40/10)); % clip below -40 dB.
|
||||||
|
S = min(S, 10^(-3/10)); % clip above -3 dB.
|
||||||
|
imagesc (t, f, log(S)); % display in log scale
|
||||||
|
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
|
||||||
|
xlabel('time (s)');
|
||||||
|
ylabel('frequency (Hz)');
|
||||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue