diff --git a/3portionssignals.png b/3portionssignals.png new file mode 100644 index 0000000..5dbb04f Binary files /dev/null and b/3portionssignals.png differ diff --git a/Praat.exe b/Praat.exe new file mode 100644 index 0000000..794afba Binary files /dev/null and b/Praat.exe differ diff --git a/frequencySpectrum.m b/frequencySpectrum.m new file mode 100644 index 0000000..6d3a67a --- /dev/null +++ b/frequencySpectrum.m @@ -0,0 +1,60 @@ +function [power, duration] = frequencySpectrum(signal, fs, pad) +%%%%%%%%%%%%%%%%%% +%function power = frequencySpectrum(signal, fs, pad) +% +% Task: Display the power spectrum (lin and log scale) of a given signal +% +% Input: +% - signal: the input signal to process +% - fs: the sampling rate +% -pad: boolean if true, signal is padded with 0 to the next power of 2 -> FFT instead of DFT +% +% Output: +% - power: the power spectrum +% +% +% Guillaume Gibert, guillaume.gibert@ecam.fr +% 25/04/2022 +%%%%%%%%%%%%%%%%%% + +n = length(signal); % number of samples + +if (pad) + n = 2^nextpow2(n); +end + +tic +y = fft(signal, n);% compute DFT of input signal +duration = toc; + +power = abs(y).^2/n; % power of the DFT + +[val, ind] = max(power); % find the mx value of DFT and its index + +% plots +figure; + +subplot(1,3,1) % time plot +t=0:1/fs:(n-1)/fs; % time range +%pad signal with zeros +if (pad) + signal = [ signal; zeros( n-length(signal), 1)]; +end +plot(t, signal) +xticks(0:0.1*fs:n*fs); +xticklabels(0:0.1:n/fs); +xlabel('Time (s)'); +ylabel('Amplitude (a.u.)'); + +subplot(1,3,2) % linear frequency plot +f = (0:n-1)*(fs/n); % frequency range +plot(f,power, 'b*'); hold on; +plot(f,power, 'r'); +xlabel('Frequency (Hz)') +ylabel('Power (a.u.)') + +subplot(1,3,3) % log frequency plot +plot(f,10*log10(power/power(ind))); +xlabel('Frequency (Hz)') +ylabel('Power (dB)') + diff --git a/modified_modulator22.wav b/modified_modulator22.wav new file mode 100644 index 0000000..e1ea963 Binary files /dev/null and b/modified_modulator22.wav differ diff --git a/modulator22.wav b/modulator22.wav new file mode 100644 index 0000000..a6ad482 Binary files /dev/null and b/modulator22.wav differ diff --git a/spectrogram.m b/spectrogram.m new file mode 100644 index 0000000..f01e8b5 --- /dev/null +++ b/spectrogram.m @@ -0,0 +1,38 @@ +function spectrogram(signal, samplingFreq, step_size, window_size) +%%%%%%%%%%%%%%%%%%%%%%% +%function spectrogram(signal, samplingFreq, step_size, window_size) +% ex.: spectrogram(signal, samplingFreq, step_size, window_size) +% +% Task: Plot the spectrogram of a given signal +% +% Inputs: +% -signal: temporal signal to analyse +% -samplingFreq: sampling frequency of the temporal signal +% -step_size: how often the power spectrum will be computed in ms +% -window_size: size of the analysing window in ms +% +% Ouput: None +% +% author: Guillaume Gibert (guillaume.gibert@ecam.fr) +% date: 14/03/2023 +%%%%%%%%%%%%%%%%%%%%%%% + +figure; + subplot(2,1,1); +t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq; +plot(t, signal'); +xlim([0 length(signal)/samplingFreq-1/samplingFreq]); +ylabel('amplitude (norm. unit)'); + subplot(2,1,2); +step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms +window = fix(window_size*samplingFreq/1000); % window_size ms data window +fftn = 2^nextpow2(window); % next highest power of 2 +[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step); +S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0