Signal_processing_Lab2/Code/frequencySpectrum.m

117 lines
3.1 KiB
Matlab

function [power, duration] = frequencySpectrum(signal, fs, pad, verbose, rangefr)
%%%%%%%%%%%%%%%%%%
%function power = frequencySpectrum(signal, fs, pad)
%
% Task: Display the power spectrum (lin and log scale) of a given signal
%
% Input:
% - signal: the input signal to process
% - fs: the sampling rate
% -pad: boolean if true, signal is padded with 0 to the next power of 2 -> FFT instead of DFT
%
% Output:
% - power: the power spectrum
%
%
% Guillaume Gibert, guillaume.gibert@ecam.fr
% 25/04/2022
%%%%%%%%%%%%%%%%%%
n = length(signal); % number of samples
if (pad)
n = 2^nextpow2(n);
end
tic
y = fft(signal, n);% compute DFT of input signal
duration = toc;
power = abs(y).^2/n; % power of the DFT
[val, ind] = max(power); % find the mx value of DFT and its index
rangemin = rangefr(1);
rangemax = rangefr(2);
if (verbose)
% plots
figure;
subplot(1,3,1) % time plot
t=0:1/fs:(n-1)/fs; % time range
%pad signal with zeros
if (pad)
signal = [ signal; zeros( n-length(signal), 1)];
end
plot(t, signal)
xticks(0:0.1*fs:n*fs);
xticklabels(0:0.1:n/fs);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
subplot(1,3,2) % linear frequency plot
f = (0:n-1)*(fs/n); % frequency range
plot(f,power, 'b*'); hold on;
plot(f,power, 'r');
xlabel('Frequency (Hz)')
ylabel('Power (a.u.)')
xlim([rangemin rangemax]);
subplot(1,3,3) % log frequency plot
power_db = 10*log10(power/power(ind));
plot(f, power_db);
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
xlim([rangemin rangemax]);
subplot(1,3,3) % log frequency plot
power_db = 10*log10(power/power(ind));
plot(f, power_db);
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
xlim([rangemin rangemax]);
% Shift power_db to all positive values
shift_amount = min(power_db) * -1;
power_db_shifted = power_db + shift_amount;
% Find peaks and their indices
[pks, locs] = findpeaks(power_db_shifted);
% Interpolate to get a smooth line
xi = linspace(min(f(locs)), max(f(locs)), 1000);
yi = interp1(f(locs), pks, xi, 'pchip');
% Shift the interpolated values back down and up by 10
yi = yi - shift_amount + 10;
% Smooth the line using a moving average filter
windowSize = 15; % Adjust this value to change the amount of smoothing
b = (1/windowSize)*ones(1,windowSize);
yi = filter(b, 1, yi);
yi = filter(b, 1, flip(yi)); % Apply the filter in reverse direction
yi = flip(yi); % Flip the data back to original direction
% Shift yi to all positive values
shift_amount_yi = min(yi) * -1;
yi_shifted = yi + shift_amount_yi;
% Find peaks of the smoothed line
[pks_smooth, locs_smooth] = findpeaks(yi_shifted);
% Plot the envelope
hold on;
plot(xi, yi, 'r-'); % plot the envelope
% Plot points and labels at the peaks
for i = 1:length(pks_smooth)
plot(xi(locs_smooth(i)), pks_smooth(i) - shift_amount_yi, 'ko');
text(xi(locs_smooth(i)), pks_smooth(i) - shift_amount_yi, ['F' num2str(i)], 'VerticalAlignment', 'bottom');
end
hold off;
end