first commit

This commit is contained in:
Guillaume BONABAU 2024-12-11 17:53:27 +01:00
commit 6273223e89
10 changed files with 680 additions and 0 deletions

5
.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

10
.vscode/extensions.json vendored Normal file
View File

@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

39
include/README Normal file
View File

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

46
lib/README Normal file
View File

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

17
platformio.ini Normal file
View File

@ -0,0 +1,17 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:uno]
platform = atmelavr
board = uno
framework = arduino
lib_deps =
waspinator/AccelStepper@^1.64
adafruit/Adafruit Motor Shield V2 Library@^1.1.3

50
python/config.json Normal file
View File

@ -0,0 +1,50 @@
{
"COM_PORT": "COM9",
"step_per_revolution": 48,
"joints": [
{
"id": 1,
"name": "base",
"step_range": [0, 2838]
},
{
"id": 2,
"name": "shoulder",
"step_range": [0, 2838]
},
{
"id": 3,
"name": "gripper_1",
"step_range": [0, 144]
},
{
"id": 4,
"name": "gripper_2",
"step_range": [-180, 180]
},
{
"id": 5,
"name": "gripper_3",
"step_range": [-180, 180]
},
{
"id": 6,
"name": "elbow",
"step_range": [-180, 180]
}
],
"coordinates": {
"x": {
"min": 0,
"max": 100
},
"y": {
"min": 0,
"max": 100
},
"z": {
"min": 0,
"max": 100
}
}
}

147
python/sliders.py Normal file
View File

@ -0,0 +1,147 @@
import serial
import time
import tkinter as tk
import json
import threading
test_mode = False
# Read the joint configuration from the config.json file
with open('config.json', 'r') as f:
config = json.load(f)
# Configure the serial port
try:
ser = serial.Serial(config["COM_PORT"], 9600) # Replace 'COM9' with your Arduino's serial port
time.sleep(2) # Wait for the serial connection to initialize
except serial.SerialException as e:
print(f"Error opening serial port: {e}")
print("Starting Test Mode")
test_mode = True
def send_potentiometer_values(values):
if len(values) != 6:
raise ValueError("Exactly 6 values are required")
# Convert the values to a comma-separated string
values_str = ','.join(map(str, values))
if not test_mode:
try:
# Send the values to the Arduino
ser.write((values_str + '\n').encode())
log_serial(f"-> {values_str}")
except serial.SerialException as e:
print(f"Error writing to serial port: {e}")
else:
log_serial(f"-> {values_str} (test)")
def log_serial(message):
serial_text.config(state=tk.NORMAL)
serial_text.insert(tk.END, message + '\n')
serial_text.config(state=tk.DISABLED)
serial_text.see(tk.END)
def read_serial():
while True:
if ser.in_waiting > 0:
try:
line = ser.readline().decode('utf-8').strip()
log_serial(f"<- {line}")
except serial.SerialException as e:
print(f"Error reading from serial port: {e}")
time.sleep(0.1)
# Create the main window
root = tk.Tk()
root.title("Potentiometer Sliders" + (f" ({config["COM_PORT"]} Not Found)" if test_mode else f"({config["COM_PORT"]})"))
# Create a frame for the sliders
slider_frame = tk.Frame(root)
slider_frame.pack(side=tk.LEFT, padx=10, pady=10)
# Create a list to store the slider values
slider_values = [tk.IntVar() for _ in range(6)]
# Create and pack the sliders using the configuration from config.json
sliders = []
for joint in config['joints']:
slider = tk.Scale(
slider_frame,
from_=joint['step_range'][0],
to=joint['step_range'][1],
orient=tk.HORIZONTAL,
variable=slider_values[joint['id'] - 1],
label=f"Joint {joint['id']}: {joint['name']}",
length=400
)
slider.pack()
sliders.append(slider)
def update_values():
values = [var.get() for var in slider_values]
send_potentiometer_values(values)
# Create a frame for the serial communication
serial_frame = tk.Frame(root)
serial_frame.pack(side=tk.RIGHT, padx=10, pady=10)
# Create a text widget for serial communication
serial_text = tk.Text(serial_frame, state=tk.DISABLED, width=50, height=20)
serial_text.pack()
def home_position():
# Set all sliders to 0
for slider in sliders:
slider.set(0)
# Send the home position values
update_values()
# Create a frame for the buttons
button_frame = tk.Frame(serial_frame)
button_frame.pack(side=tk.BOTTOM, pady=10)
# Create and pack the send button
send_button = tk.Button(button_frame, text="Send", command=update_values)
send_button.pack(side=tk.LEFT, padx=5)
# Create and pack the home button
home_button = tk.Button(button_frame, text="Home", command=home_position)
home_button.pack(side=tk.LEFT, padx=5)
# Loop functionality
looping = False
def toggle_loop():
global looping
looping = not looping
if looping:
loop_button.config(text="Loop: ON")
start_loop()
else:
loop_button.config(text="Loop: OFF")
def start_loop():
if looping:
update_values()
root.after(1000, start_loop) # Adjust the interval as needed
# Create and pack the loop button
loop_button = tk.Button(button_frame, text="Loop: OFF", command=toggle_loop)
loop_button.pack(side=tk.LEFT, padx=5)
# Start a thread to read from the serial port
if not test_mode:
threading.Thread(target=read_serial, daemon=True).start()
# Run the Tkinter event loop
try:
root.mainloop()
except Exception as e:
print(f"Error in Tkinter event loop: {e}")
# Close the serial port when the program is terminated
try:
ser.close()
except serial.SerialException as e:
print(f"Error closing serial port: {e}")

186
python/sliders_cartesian.py Normal file
View File

@ -0,0 +1,186 @@
import serial
import time
import tkinter as tk
import json
import threading
import numpy as np
test_mode = False
# Read the joint configuration from the config.json file
with open('config.json', 'r') as f:
config = json.load(f)
# Configure the serial port
try:
ser = serial.Serial(config["COM_PORT"], 9600) # Replace 'COM9' with your Arduino's serial port
time.sleep(2) # Wait for the serial connection to initialize
except serial.SerialException as e:
print(f"Error opening serial port: {e}")
print("Starting Test Mode")
test_mode = True
def send_potentiometer_values(values):
if len(values) != 6:
raise ValueError("Exactly 6 values are required")
# Convert the values to a comma-separated string
values_str = ','.join(map(str, values))
if not test_mode:
try:
# Send the values to the Arduino
ser.write((values_str + '\n').encode())
log_serial(f"-> {values_str}")
except serial.SerialException as e:
print(f"Error writing to serial port: {e}")
else:
log_serial(f"-> {values_str} (test)")
def log_serial(message):
serial_text.config(state=tk.NORMAL)
serial_text.insert(tk.END, message + '\n')
serial_text.config(state=tk.DISABLED)
serial_text.see(tk.END)
def read_serial():
while True:
if ser.in_waiting > 0:
try:
line = ser.readline().decode('utf-8').strip()
log_serial(f"<- {line}")
except serial.SerialException as e:
print(f"Error reading from serial port: {e}")
time.sleep(0.1)
def cartesian_to_angles(x, y, z):
# Placeholder function for converting Cartesian coordinates to joint angles using Jacobian matrix
# Replace this with the actual implementation
# Example: Inverse kinematics calculations using Jacobian matrix
theta1 = np.arctan2(y, x)
r = np.sqrt(x**2 + y**2)
theta2 = np.arctan2(z, r)
theta3 = np.arctan2(z, r) # Simplified example
return [theta1, theta2, theta3]
def angles_to_steps(angles):
# Convert angles to step values based on the configuration
steps = []
for i, angle in enumerate(angles):
step_range = config['joints'][i]['step_range']
steps_per_revolution = config['step_per_revolution']
steps.append(int(angle * steps_per_revolution / (2 * np.pi) * (step_range[1] - step_range[0])))
return steps
# Create the main window
root = tk.Tk()
root.title("Cartesian Potentiometer Sliders" + (f" ({config['COM_PORT']} Not Found)" if test_mode else f"({config['COM_PORT']})"))
# Create a frame for the sliders
slider_frame = tk.Frame(root)
slider_frame.pack(side=tk.LEFT, padx=10, pady=10)
# Create a list to store the slider values
slider_values = [tk.IntVar() for _ in range(6)]
# Create and pack the sliders for x, y, z coordinates
sliders = []
coordinates = ['x', 'y', 'z']
for i, coord in enumerate(coordinates):
slider = tk.Scale(
slider_frame,
from_=config['coordinates'][coord]['min'],
to=config['coordinates'][coord]['max'],
orient=tk.HORIZONTAL,
variable=slider_values[i],
label=f"{coord.upper()} Coordinate",
length=400
)
slider.pack()
sliders.append(slider)
# Create and pack the sliders for the gripper joints
for i in range(3, 6):
slider = tk.Scale(
slider_frame,
from_=config['joints'][i]['step_range'][0],
to=config['joints'][i]['step_range'][1],
orient=tk.HORIZONTAL,
variable=slider_values[i],
label=f"Joint {config['joints'][i]['id']}: {config['joints'][i]['name']}",
length=400
)
slider.pack()
sliders.append(slider)
def update_values():
# Get the Cartesian coordinates from the first three sliders
x = slider_values[0].get()
y = slider_values[1].get()
z = slider_values[2].get()
# Convert Cartesian coordinates to joint angles using Jacobian matrix
angles = cartesian_to_angles(x, y, z)
# Convert joint angles to step values
steps = angles_to_steps(angles)
# Get the values for the last three joints from the sliders
gripper_values = [slider_values[i].get() for i in range(3, 6)]
# Combine the steps and gripper values
values = steps + gripper_values
send_potentiometer_values(values)
# Create a frame for the serial communication
serial_frame = tk.Frame(root)
serial_frame.pack(side=tk.RIGHT, padx=10, pady=10)
# Create a text widget for serial communication
serial_text = tk.Text(serial_frame, state=tk.DISABLED, width=50, height=20)
serial_text.pack()
# Create a frame for the buttons
button_frame = tk.Frame(serial_frame)
button_frame.pack(side=tk.BOTTOM, pady=10)
# Create and pack the send button
send_button = tk.Button(button_frame, text="Send", command=update_values)
send_button.pack(side=tk.LEFT, padx=5)
# Loop functionality
looping = False
def toggle_loop():
global looping
looping = not looping
if looping:
loop_button.config(text="Loop: ON")
start_loop()
else:
loop_button.config(text="Loop: OFF")
def start_loop():
if looping:
update_values()
root.after(1000, start_loop) # Adjust the interval as needed
# Create and pack the loop button
loop_button = tk.Button(button_frame, text="Loop: OFF", command=toggle_loop)
loop_button.pack(side=tk.LEFT, padx=5)
# Start a thread to read from the serial port
if not test_mode:
threading.Thread(target=read_serial, daemon=True).start()
# Run the Tkinter event loop
try:
root.mainloop()
except Exception as e:
print(f"Error in Tkinter event loop: {e}")
# Close the serial port when the program is terminated
try:
ser.close()
except serial.SerialException as e:
print(f"Error closing serial port: {e}")

169
src/main.cpp Normal file
View File

@ -0,0 +1,169 @@
#include <SPI.h>
#include <AccelStepper.h>
#include <Adafruit_MotorShield.h>
#define STEPSBYREVOLUTION 48
// Create the motor shield object with 0x60 address for the top shield
Adafruit_MotorShield AFMS_1 = Adafruit_MotorShield(0x60);
// Create the motor shield object with 0x61 address for the bottom shield
Adafruit_MotorShield AFMS_2 = Adafruit_MotorShield(0x61);
// Create the motor shield object with 0x61 address for the bottom shield
Adafruit_MotorShield AFMS_3 = Adafruit_MotorShield(0x63);
// to shield 1, motor port #1 (M1 and M2)
Adafruit_StepperMotor *myMotor1 = AFMS_1.getStepper(48, 1);
// you can change these to DOUBLE or INTERLEAVE or MICROSTEP!
// wrappers for the 1st motor!
void forwardstep1() {
myMotor1->onestep(FORWARD, SINGLE);
}
void backwardstep1() {
myMotor1->onestep(BACKWARD, SINGLE);
}
// to shield 1, motor port #2 (M3 and M4)
Adafruit_StepperMotor *myMotor2 = AFMS_1.getStepper(48, 2);
// you can change these to DOUBLE or INTERLEAVE or MICROSTEP!
// wrappers for the 2nd motor!
void forwardstep2() {
myMotor2->onestep(FORWARD, SINGLE);
}
void backwardstep2() {
myMotor2->onestep(BACKWARD, SINGLE);
}
// to shield 2, motor port #1 (M1 and M2)
Adafruit_StepperMotor *myMotor3 = AFMS_2.getStepper(48, 1);
// you can change these to DOUBLE or INTERLEAVE or MICROSTEP!
// wrappers for the 3rd motor!
void forwardstep3() {
myMotor3->onestep(FORWARD, SINGLE);
}
void backwardstep3() {
myMotor3->onestep(BACKWARD, SINGLE);
}
// to shield 2, motor port #2 (M3 and M4)
Adafruit_StepperMotor *myMotor4 = AFMS_2.getStepper(48, 2);
// you can change these to DOUBLE or INTERLEAVE or MICROSTEP!
// wrappers for the 4th motor!
void forwardstep4() {
myMotor4->onestep(FORWARD, SINGLE);
}
void backwardstep4() {
myMotor4->onestep(BACKWARD, SINGLE);
}
// to shield 3, motor port #1 (M1 and M2)
Adafruit_StepperMotor *myMotor5 = AFMS_3.getStepper(48, 1);
// you can change these to DOUBLE or INTERLEAVE or MICROSTEP!
// wrappers for the 5th motor!
void forwardstep5() {
myMotor5->onestep(FORWARD, SINGLE);
}
void backwardstep5() {
myMotor5->onestep(BACKWARD, SINGLE);
}
// to shield 3, motor port #2 (M3 and M4)
Adafruit_StepperMotor *myMotor6 = AFMS_3.getStepper(48, 2);
// you can change these to DOUBLE or INTERLEAVE or MICROSTEP!
// wrappers for the 6th motor!
void forwardstep6() {
myMotor6->onestep(FORWARD, SINGLE);
}
void backwardstep6() {
myMotor6->onestep(BACKWARD, SINGLE);
}
// Now we'll wrap the 6 steppers in an AccelStepper object
AccelStepper stepper1(forwardstep1, backwardstep1);
AccelStepper stepper2(forwardstep2, backwardstep2);
AccelStepper stepper3(forwardstep3, backwardstep3);
AccelStepper stepper4(forwardstep4, backwardstep4);
AccelStepper stepper5(forwardstep5, backwardstep5);
AccelStepper stepper6(forwardstep6, backwardstep6);
unsigned long lastUpdate = 0; // Last time the position was updated
const int updateInterval = 0; // Update interval in milliseconds
int newTarget = 0;
int motorSpeed = 10;
int potValue1 = 0;
int potValue2 = 0;
int potValue3 = 0;
int potValue4 = 0;
int potValue5 = 0;
int potValue6 = 0;
int targetPosition1 = 0;
int targetPosition2 = 0;
int targetPosition3 = 0;
int targetPosition4 = 0;
int targetPosition5 = 0;
int targetPosition6 = 0;
void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
AFMS_1.begin(); // Start the bottom shield
AFMS_2.begin(); // Start the bottom shield
AFMS_3.begin(); // Start the top shield
stepper1.setSpeed(motorSpeed);
stepper2.setSpeed(motorSpeed);
stepper3.setSpeed(motorSpeed);
stepper4.setSpeed(motorSpeed);
stepper5.setSpeed(motorSpeed);
stepper6.setSpeed(motorSpeed);
}
void loop() {
// put your main code here, to run repeatedly:
if (Serial.available() > 0) {
String data = Serial.readStringUntil('\n');
int jointValues[6];
int index = 0;
int start = 0;
int end = data.indexOf(',');
while (end != -1 && index < 6) {
jointValues[index] = data.substring(start, end).toInt();
start = end + 1;
end = data.indexOf(',', start);
index++;
}
if (index < 6) {
jointValues[index] = data.substring(start).toInt();
}
stepper1.moveTo(jointValues[0]);
stepper2.moveTo(jointValues[1]);
stepper3.moveTo(jointValues[2]);
stepper4.moveTo(jointValues[3]);
stepper5.moveTo(jointValues[4]);
stepper6.moveTo(jointValues[5]);
}
stepper1.runSpeedToPosition();
stepper2.runSpeedToPosition();
stepper3.runSpeedToPosition();
stepper4.runSpeedToPosition();
stepper5.runSpeedToPosition();
stepper6.runSpeedToPosition();
}

11
test/README Normal file
View File

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Test Runner and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/en/latest/advanced/unit-testing/index.html