new random to generate the bmp, only in main4

This commit is contained in:
Laure BEL 2025-05-11 15:04:05 +02:00
parent ba1e357124
commit 3233ed9245
2 changed files with 106 additions and 46 deletions

View File

@ -6,28 +6,18 @@
#include <windows.h>
// === Parameters ===
const int BPM_MIN = 50;
const int BPM_MAX = 120;
const int SAMPLE_INTERVAL_MS = 100; // Sampling every 10 ms
const int THRESHOLD = 550; // Threshold for heartbeat detection
const int NOISE_LEVEL = 100; // Simulated noise level
//const int BPM_MIN = 50;
//const int BPM_MAX = 120;
const int SAMPLE_INTERVAL_MS = 1000; // Sampling every 10 ms
const int THRESHOLD_CARDIAC_ARREST = 2;
//const int NOISE_LEVEL = 100; // Simulated noise level
// === Initialize random generator ===
void initialiserRandom() {
srand(static_cast<unsigned int>(time(0)));
}
// === Simulate heart signal from sensor ===
int simulerSignalCardiaque() {
static int t = 0;
t++;
// Simulate a peak every ~800 ms (≈75 BPM)
if (t % 80 == 0) {
return 700 + rand() % 50; // Simulated peak
} else if (t % 10==0){
return 300 + rand() % NOISE_LEVEL; // Background noise
}
// === Initialize random generator ===// === Simulate heart signal from sensor ===
int generateRandomHeartRate() {
//int bpm = 30 + rand() % 111; // génère un BPM entre 30 et 140
int bpm = rand() % 141; // génère un BPM entre 0 et 140
return bpm;
}
// === Simulate buzzer activation ===
@ -47,46 +37,55 @@ void envoyerMessageBluetooth(bool urgence) {
// === Main program ===
int main() {
initialiserRandom();
bool battementDetecte = false;
auto dernierBattement = std::chrono::steady_clock::now();
std::cout << " Demarrage de la simulation du capteur cardiaque...\n";
int i=0;
int lastBPM;
while (true) {
int signal = simulerSignalCardiaque();
//int signal = simulerSignalCardiaque();
//std::cout << "Signal: " << signal << std::endl; // verify the signal detected
// Détection de battement
if (signal > THRESHOLD && !battementDetecte) {
if (!battementDetecte) { //signal > THRESHOLD &&
auto maintenant = std::chrono::steady_clock::now();
auto intervalle = std::chrono::duration_cast<std::chrono::milliseconds>(maintenant - dernierBattement).count();
int bpm = generateRandomHeartRate();
std::cout << " BPM mesure : " << bpm;
if (intervalle > 300) { // BPM > 200 => ignore
int bpm = 60000 / intervalle;
std::cout << " BPM mesure : " << bpm;
bool anomalie = (bpm < BPM_MIN || bpm > BPM_MAX);
if (anomalie) {
std::cout << " [ANOMALIE]";
if (bpm < 55 && bpm > 40){
std::cout << " [BRADYCARDIA]" << std::endl;
activerVibreur();
} else if(bpm < 140 && bpm > 110) {
std::cout << " [TACHYCARDIA]" << std::endl;
activerVibreur();
}else if(bpm < 110 && bpm > 55){
std::cout << " [NORMAL]" << std::endl;
envoyerMessageBluetooth(false);
} else if (bpm < 40){
if (i>THRESHOLD_CARDIAC_ARREST && lastBPM < 40){
i=0;
std::cout << " [CARDIAC ARREST]" << std::endl;
activerBuzzer();
activerVibreur();
envoyerMessageBluetooth(true);
} else {
envoyerMessageBluetooth(false);
}
std::cout << std::endl;
dernierBattement = maintenant;
}
}else{
i+=1;
}
}
std::cout << std::endl;
dernierBattement = maintenant;
battementDetecte = true;
}
lastBPM =bpm;
std::cout << lastBPM << std::endl;
// Prêt pour détecter le prochain battement
if (signal < THRESHOLD) {
battementDetecte = false;
}else {
battementDetecte = false;// Prêt pour détecter le prochain battement
}
Sleep(SAMPLE_INTERVAL_MS); // expects milliseconds

View File

@ -1,9 +1,70 @@
#include <iostream>
#include <thread>
#include <vector>
#include <chrono>
#include <random>
int main() {
std::cout << "Sleeping..." << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1));
std::cout << "Awake!" << std::endl;
// État du rythme cardiaque
enum class HeartRateState {
NORMAL,
BRADYCARDIA,
TACHYCARDIA
};
// Fonction pour générer un signal de battement cardiaque
std::vector<float> generateHeartbeatSignal(HeartRateState state, int durationSeconds = 10, int sampleRate = 1000) {
int bpm;
switch (state) {
case HeartRateState::BRADYCARDIA:
bpm = 40 + rand() % 15; // 40-55 BPM
break;
case HeartRateState::TACHYCARDIA:
bpm = 110 + rand() % 30; // 110-140 BPM
break;
default:
bpm = 60 + rand() % 40; // 60-100 BPM
break;
}
int totalSamples = durationSeconds * sampleRate;
int samplesPerBeat = (60.0 / bpm) * sampleRate;
std::vector<float> signal(totalSamples, 0.0f);
for (int i = 0; i < totalSamples; i += samplesPerBeat) {
if (i < totalSamples) signal[i] = 1.0f; // Pic R
if (i + 1 < totalSamples) signal[i + 1] = 0.5f;
if (i + 2 < totalSamples) signal[i + 2] = 0.2f;
}
return signal;
}
// Pause active sans utiliser thread
void waitMilliseconds(int ms) {
auto start = std::chrono::high_resolution_clock::now();
while (std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - start).count() < ms) {
// boucle vide
}
}
// Affichage du signal
void printSignal(const std::vector<float>& signal, int sampleRate) {
for (size_t i = 0; i < signal.size(); ++i) {
std::cout << signal[i] << "\n";
waitMilliseconds(1000 / sampleRate);
}
}
// ----------- FONCTION PRINCIPALE ------------
int main() {
std::cout << "Simulation dun signal de battement cardiaque\n";
// Tu peux changer ici : NORMAL / BRADYCARDIA / TACHYCARDIA
HeartRateState state = HeartRateState::TACHYCARDIA;
std::vector<float> signal = generateHeartbeatSignal(state, 5, 100); // 5 secondes, 100 Hz
printSignal(signal, 100);
return 0;
}