Compare commits

...

2 Commits

Author SHA1 Message Date
Laure BEL 9da003ca98 Merge branch 'develop' 2024-03-18 09:25:59 +01:00
Laure BEL a1a7c8effb Update of the project 2024-03-18 09:25:47 +01:00
4 changed files with 205 additions and 0 deletions

36
blackmanWin.m Normal file
View File

@ -0,0 +1,36 @@
function signal_win = blackmanWin(signal)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function signal_win = blackmanWin(signal)
%
% Inputs:
% - signal: signal of interest
%
% Output:
% - signal_win: signal of interest on which a blackman window was applied
%
% Author: Guillaume Gibert, guillaume.gibert@ecam.fr
% Date: 15/03/2024
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
blackmanWin = zeros(1, length(signal));
for l_sample=1:length(signal)
blackmanWin(l_sample) = (0.42 - 0.5 * cos(2*pi*(l_sample)/length(signal)) + 0/08*cos(4*pi*(l_sample)/length(signal)));
end
% plot Blackman window
%~ figure;
%~ plot(blackmanWin);
% apply the Blackman window
for l_sample=1:length(signal)
signal_win(l_sample) = signal(l_sample) * blackmanWin(l_sample);
end
%~ figure;
%~ plot(signal);
%~ hold on;
%~ plot(signal_win);

57
frequencySpectrum.m Normal file
View File

@ -0,0 +1,57 @@
function power = frequencySpectrum(signal, fs, pad)
%%%%%%%%%%%%%%%%%%
%function power = frequencySpectrum(signal, fs, pad)
%
% Task: Display the power spectrum (lin and log scale) of a given signal
%
% Input:
% - signal: the input signal to process
% - fs: the sampling rate
% - pad: pad the signal with zeros to the next power of 2
%
% Output:
% - power: the power spectrum
%
%
% Guillaume Gibert, guillaume.gibert@ecam.fr
% 25/04/2022
%%%%%%%%%%%%%%%%%%
n = length(signal); % number of samples
if (pad)
n_original = n;
n = 2^(nextpow2(n));
signal = [signal zeros(1, n-n_original)];
end
y = fft(signal, n);% compute DFT of input signal
power = abs(y).^2/n; % power of the DFT
[val, ind] = max(power); % find the mx value of DFT and its index
% plots
figure;
subplot(1,3,1) % time plot
t=0:1/fs:(n-1)/fs; % time range
plot(t, signal)
xticks(0:0.1*fs:n*fs);
xticklabels(0:0.1:n/fs);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
subplot(1,3,2) % linear frequency plot
f = (0:n-1)*(fs/n); % frequency range
plot(f,power, 'b*'); hold on;
plot(f,power, 'r');
xlabel('Frequency (Hz)')
ylabel('Power (a.u.)')
xlim([30,40]);
subplot(1,3,3) % log frequency plot
plot(f,10*log10(power/power(ind)));
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
xlim([30,40]);

74
main.m Normal file
View File

@ -0,0 +1,74 @@
%%%%%%%%%%%%%%%%%%%%%%
% UNKNOWN SIGNAL
% Sampling frequency: 200 Hz
% Duration; 2 s
% First second: 6.25Hz, 13.28 Hz, 17.19 Hz
% Second second: 17.97Hz, 6.25 Hz, 8.59 Hz, 13.28 Hz
%%%%%%%%%%%%%%%%%%%%%%
% loads the signal package on Octave
% pkg load signal
% loads signal and its characteristics
signal = csvread('unknownsignal.csv');
%%%%%SIGNAL CHARACTERISTICS%%%%%
% sets sampling frequency
fps = 300; % -> freqMax of the signal should be < 150 Hz (Shannon-Nyquisit theorem), in practice freqMax < 60 Hz would be better
% computes the duration of the signal
duration = length(signal) / fps; % in s
% estimates its original frequency resolution
resolution = fps / length(signal); % in Hz
%%%%%STATIONARITY%%%%%
% temporal plot
figure;
plot(signal);
xticks(0:0.2*fps:length(signal)*fps);
xticklabels(0:0.2:length(signal)/fps);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
% spectrogram
step_size = 50; %ms
window_size = 100; %ms
spectrogram(signal, fps, step_size, window_size);
% ccl: signal is not stationary, it is composed of 2 parts
%%%%%SPLIT SIGNAL INTO 2 PARTS%%%%%
% First part: [0 1s]
signal_1 = signal(1:end/2);
% Second part: [1s 2s]
signal_2 = signal(end/2+1:end);
%%%%%SPECTRAL ANALYSIS (RECTANGULAR WINDOW)%%%%%
%plots power spectrum with rectangular window
% 1st part of the signal with 1 Hz resolution
frequencySpectrum(signal_1, fps, 1);
% 2nd part of the signal with 1 Hz resolution
frequencySpectrum(signal_2, fps, 1);
%%%%%SPECTRAL ANALYSIS (BLACKMAN WINDOW)%%%%%
%plots power spectrum with blackman window
signal_1_win = blackmanWin(signal_1);
% 1st part of the signal with 1 Hz resolution
frequencySpectrum(signal_1_win, fps, 1);
signal_2_win = blackmanWin(signal_2);
% 2nd part of the signal with 1 Hz resolution
frequencySpectrum(signal_2_win, fps, 1);

38
spectrogram.m Normal file
View File

@ -0,0 +1,38 @@
function spectrogram(signal, samplingFreq, step_size, window_size)
%%%%%%%%%%%%%%%%%%%%%%%
%function spectrogram(signal, samplingFreq, step_size, window_size)
% ex.: spectrogram(signal, 300, 50, 1000)
%
% Task: Plot the spectrogram of a given signal
%
% Inputs:
% -signal: temporal signal to analyse
% -samplingFreq: sampling frequency of the temporal signal
% -step_size: how often the power spectrum will be computed in ms
% -window_size: size of the analysing window in ms
%
% Ouput: None
%
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
% date: 14/03/2023
%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(2,1,1);
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
plot(t, signal');
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
ylabel('amplitude (norm. unit)');
subplot(2,1,2);
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
window = fix(window_size*samplingFreq/1000); % window_size ms data window
fftn = 2^nextpow2(window); % next highest power of 2
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
S = abs(S(2:fftn*samplingFreq/2/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
S = max(S, 10^(-40/10)); % clip below -40 dB.
S = min(S, 10^(-3/10)); % clip above -3 dB.
imagesc (t, f, log(S)); % display in log scale
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
xlabel('time (s)');
ylabel('frequency (Hz)');