Compare commits
2 Commits
| Author | SHA1 | Date |
|---|---|---|
|
|
859fa02ab6 | |
|
|
bde8dbff75 |
51
Main.m
51
Main.m
|
|
@ -4,12 +4,55 @@
|
|||
#
|
||||
#Last modified: 02/03/2023 08:28:32
|
||||
#
|
||||
#
|
||||
#
|
||||
#
|
||||
#################
|
||||
|
||||
pkg load signal;
|
||||
|
||||
clc;
|
||||
close all;
|
||||
clear all;
|
||||
|
||||
|
||||
signal = csvread ('unknownsignal.csv');
|
||||
|
||||
figure;
|
||||
plot(signal);
|
||||
title("raw Signal");
|
||||
xlabel("time");
|
||||
ylabel("Amplitude");
|
||||
|
||||
% set signal of interest
|
||||
SStart = 100;
|
||||
SEnd = 400;
|
||||
|
||||
Fs = 300;
|
||||
|
||||
lenDomain = 1 + (SEnd - SStart);
|
||||
|
||||
windowed_signal= zeros(lenDomain);
|
||||
|
||||
% using blackman , we get the signal of interest
|
||||
windowed_signal = signal(SStart:SEnd) .* blackman(lenDomain)';
|
||||
|
||||
figure;
|
||||
plot(SStart: SEnd, windowed_signal);
|
||||
title("Blackman signal windowing");
|
||||
xlabel("samples");
|
||||
ylabel("Amplitude");
|
||||
|
||||
frequencySpectrum(windowed_signal, Fs, 0);
|
||||
|
||||
%spectrogram(windowed_signal, Fs, 1/Fs, 1000*length(signal)/Fs);
|
||||
|
||||
% filter using filter and butter
|
||||
|
||||
[val, ind] = max(windowed_signal);
|
||||
|
||||
figure;
|
||||
[b, a] = butter(6, 10/Fs);
|
||||
s = filter(b, a, 10*log10(windowed_signal/windowed_signal(ind)));
|
||||
plot(50:300, s(50:300));
|
||||
|
||||
|
||||
audiowrite("sound.wav", signal, Fs);
|
||||
|
||||
x = csvread (filename)
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
function power = frequencySpectrum(signal, fs)
|
||||
%%%%%%%%%%%%%%%%%%
|
||||
%function frequencySpectrum(signal, fs)
|
||||
%
|
||||
% Task: Display the power spectrum of a given signal
|
||||
%
|
||||
% Input:
|
||||
% - signal: the input signal to process
|
||||
% - fs: the sampling rate
|
||||
%
|
||||
% Output:
|
||||
% - power: power spectrum of the signal
|
||||
%
|
||||
%
|
||||
% Guillaume Gibert, guillaume.gibert@ecam.fr
|
||||
% 25/04/2022
|
||||
%%%%%%%%%%%%%%%%%%
|
||||
|
||||
n = length(signal); % number of samples
|
||||
|
||||
y = fft(signal, n);% compute DFT of input signal
|
||||
power = abs(y).^2/n; % power of the DFT
|
||||
|
||||
[val, ind] = max(power); % find the mx value of DFT and its index
|
||||
|
||||
% plots
|
||||
figure;
|
||||
|
||||
subplot(1,3,1) % time plot
|
||||
t=0:1/fs:(n-1)/fs; % time range
|
||||
plot(t, signal)
|
||||
xticks(0:0.1*fs:n*fs);
|
||||
xticklabels(0:0.1:n/fs);
|
||||
xlabel('Time (s)');
|
||||
ylabel('Amplitude (a.u.)');
|
||||
|
||||
subplot(1,3,2) % linear frequency plot
|
||||
f = (0:n-1)*(fs/n); % frequency range
|
||||
plot(f,power, 'b*'); hold on;
|
||||
plot(f,power, 'r');
|
||||
xlabel('Frequency (Hz)')
|
||||
ylabel('Power (a.u.)')
|
||||
|
||||
subplot(1,3,3) % log frequency plot
|
||||
plot(f,10*log10(power/power(ind)));
|
||||
xlabel('Frequency (Hz)')
|
||||
ylabel('Power (dB)')
|
||||
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
|
||||
%
|
||||
% Task: Plot the spectrogram of a given signal
|
||||
%
|
||||
% Inputs:
|
||||
% -signal: temporal signal to analyse
|
||||
% -samplingFreq: sampling frequency of the temporal signal
|
||||
% -step_size: how often the power spectrum will be computed in ms
|
||||
% -window_size: size of the analysing window in ms
|
||||
%
|
||||
% Ouput: None
|
||||
%
|
||||
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
|
||||
% date: 14/03/2023
|
||||
%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
figure;
|
||||
subplot(2,1,1);
|
||||
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
|
||||
plot(t, signal');
|
||||
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
|
||||
ylabel('amplitude (norm. unit)');
|
||||
subplot(2,1,2);
|
||||
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
|
||||
window = fix(window_size*samplingFreq/1000); % window_size ms data window
|
||||
fftn = 2^nextpow2(window); % next highest power of 2
|
||||
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
|
||||
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
|
||||
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
|
||||
S = max(S, 10^(-40/10)); % clip below -40 dB.
|
||||
S = min(S, 10^(-3/10)); % clip above -3 dB.
|
||||
imagesc (t, f, log(S)); % display in log scale
|
||||
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
|
||||
xlabel('time (s)');
|
||||
ylabel('frequency (Hz)');
|
||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue