Compare commits

...

2 Commits

Author SHA1 Message Date
rio.loann 859fa02ab6 final version 2023-04-20 11:29:13 +02:00
rio.loann bde8dbff75 frequency spectrum + filter 2023-04-20 11:08:57 +02:00
6 changed files with 134 additions and 4 deletions

51
Main.m
View File

@ -4,12 +4,55 @@
#
#Last modified: 02/03/2023 08:28:32
#
#
#
#
#################
pkg load signal;
clc;
close all;
clear all;
signal = csvread ('unknownsignal.csv');
figure;
plot(signal);
title("raw Signal");
xlabel("time");
ylabel("Amplitude");
% set signal of interest
SStart = 100;
SEnd = 400;
Fs = 300;
lenDomain = 1 + (SEnd - SStart);
windowed_signal= zeros(lenDomain);
% using blackman , we get the signal of interest
windowed_signal = signal(SStart:SEnd) .* blackman(lenDomain)';
figure;
plot(SStart: SEnd, windowed_signal);
title("Blackman signal windowing");
xlabel("samples");
ylabel("Amplitude");
frequencySpectrum(windowed_signal, Fs, 0);
%spectrogram(windowed_signal, Fs, 1/Fs, 1000*length(signal)/Fs);
% filter using filter and butter
[val, ind] = max(windowed_signal);
figure;
[b, a] = butter(6, 10/Fs);
s = filter(b, a, 10*log10(windowed_signal/windowed_signal(ind)));
plot(50:300, s(50:300));
audiowrite("sound.wav", signal, Fs);
x = csvread (filename)

48
frequencySpectrum.m Normal file
View File

@ -0,0 +1,48 @@
function power = frequencySpectrum(signal, fs)
%%%%%%%%%%%%%%%%%%
%function frequencySpectrum(signal, fs)
%
% Task: Display the power spectrum of a given signal
%
% Input:
% - signal: the input signal to process
% - fs: the sampling rate
%
% Output:
% - power: power spectrum of the signal
%
%
% Guillaume Gibert, guillaume.gibert@ecam.fr
% 25/04/2022
%%%%%%%%%%%%%%%%%%
n = length(signal); % number of samples
y = fft(signal, n);% compute DFT of input signal
power = abs(y).^2/n; % power of the DFT
[val, ind] = max(power); % find the mx value of DFT and its index
% plots
figure;
subplot(1,3,1) % time plot
t=0:1/fs:(n-1)/fs; % time range
plot(t, signal)
xticks(0:0.1*fs:n*fs);
xticklabels(0:0.1:n/fs);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
subplot(1,3,2) % linear frequency plot
f = (0:n-1)*(fs/n); % frequency range
plot(f,power, 'b*'); hold on;
plot(f,power, 'r');
xlabel('Frequency (Hz)')
ylabel('Power (a.u.)')
subplot(1,3,3) % log frequency plot
plot(f,10*log10(power/power(ind)));
xlabel('Frequency (Hz)')
ylabel('Power (dB)')

0
sound Normal file
View File

BIN
sound.wav Normal file

Binary file not shown.

38
spectrogram.m Normal file
View File

@ -0,0 +1,38 @@
function spectrogram(signal, samplingFreq, step_size, window_size)
%%%%%%%%%%%%%%%%%%%%%%%
%function spectrogram(signal, samplingFreq, step_size, window_size)
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
%
% Task: Plot the spectrogram of a given signal
%
% Inputs:
% -signal: temporal signal to analyse
% -samplingFreq: sampling frequency of the temporal signal
% -step_size: how often the power spectrum will be computed in ms
% -window_size: size of the analysing window in ms
%
% Ouput: None
%
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
% date: 14/03/2023
%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(2,1,1);
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
plot(t, signal');
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
ylabel('amplitude (norm. unit)');
subplot(2,1,2);
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
window = fix(window_size*samplingFreq/1000); % window_size ms data window
fftn = 2^nextpow2(window); % next highest power of 2
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
S = max(S, 10^(-40/10)); % clip below -40 dB.
S = min(S, 10^(-3/10)); % clip above -3 dB.
imagesc (t, f, log(S)); % display in log scale
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
xlabel('time (s)');
ylabel('frequency (Hz)');

1
unknownsignal.csv Normal file

File diff suppressed because one or more lines are too long