Merge branch 'develop'
This commit is contained in:
commit
0ab5bd0691
|
|
@ -0,0 +1,66 @@
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
% Script task: Normalize RGB data and plot FFT using the power spectra
|
||||||
|
%
|
||||||
|
% Input : RGB_data.csv -> average RGB values of each image
|
||||||
|
%
|
||||||
|
% Output : Fast Fourier Transform of X(t): a graph representing the Single-Sided Amplitude Spectrum of X(t)
|
||||||
|
%
|
||||||
|
% Author: Loic Delattre and Maryne DEY (maryne.dey@ecam.fr, loic.delattre@ecam.fr)
|
||||||
|
% Date: 07/02/2023
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
clc
|
||||||
|
|
||||||
|
%To be able to extract from external format (excel)
|
||||||
|
pkg load io
|
||||||
|
|
||||||
|
%Normalization of the data
|
||||||
|
data = frames_RGBs ()';
|
||||||
|
standard_deviation = std(data);
|
||||||
|
mean_value = mean(data);
|
||||||
|
|
||||||
|
for i = 1:size(data,1)
|
||||||
|
normalized_data_G(i,1) = (data(i,2)-mean_value(2))/standard_deviation(2); %%2 and not 1 because green is the 2nd color
|
||||||
|
endfor
|
||||||
|
|
||||||
|
%Input characteristics
|
||||||
|
img_num = length(data);
|
||||||
|
Fs = img_num/32; % Sampling frequency = X images in 32 seconds
|
||||||
|
T = 1/Fs; % Sampling period
|
||||||
|
L = img_num; % Length of signal = 32 seconds
|
||||||
|
t = (0:L-1)*T; % Time vector
|
||||||
|
|
||||||
|
X = normalized_data_G;
|
||||||
|
|
||||||
|
%Plot of the RGB data in the time domain
|
||||||
|
plot(t(1:L),X(1:L))
|
||||||
|
title("Signal")
|
||||||
|
xlabel("t (milliseconds)")
|
||||||
|
ylabel("X(t)")
|
||||||
|
|
||||||
|
%Finding power spectra P2 and P1
|
||||||
|
Y = fft(X);
|
||||||
|
P2 = abs(Y/L);
|
||||||
|
P1 = P2(1:L/2+1);
|
||||||
|
P1(2:end-1) = 2*P1(2:end-1);
|
||||||
|
f = Fs*(0:(L/2))/L;
|
||||||
|
|
||||||
|
% Finding boudaries
|
||||||
|
start = find(f==0.75);
|
||||||
|
stop = find(f==4);
|
||||||
|
P1_graph = P1(start:stop);
|
||||||
|
f_graph = f(start:stop);
|
||||||
|
|
||||||
|
%Graph of FFT in function of the frequency
|
||||||
|
plot(f_graph,P1_graph)
|
||||||
|
title("Single-Sided Amplitude Spectrum of X(t)")
|
||||||
|
xlabel("f (Hz)")
|
||||||
|
ylabel("|P1(f)|")
|
||||||
|
|
||||||
|
%Extracting the heart rate
|
||||||
|
[heart_rate_Hz, index] = max(P1_graph);
|
||||||
|
corresponding_frequency = f_graph(index);
|
||||||
|
heart_rate_bpm = corresponding_frequency*60;
|
||||||
|
fprintf("Your heart rate is about %d bpm.\n", heart_rate_bpm)
|
||||||
|
|
@ -10,7 +10,7 @@
|
||||||
% Output:
|
% Output:
|
||||||
% -RGB_avg: a 1x3 matrix with the RGB average values, format -> [R, G, B]
|
% -RGB_avg: a 1x3 matrix with the RGB average values, format -> [R, G, B]
|
||||||
%
|
%
|
||||||
% author: Loic Delattre (loic.delattre@ecam.fr)
|
% author: Maryne Dey and Loic Delattre (maryne.dey@ecam.fr, loic.delattre@ecam.fr)
|
||||||
% date: 06/02/2023
|
% date: 06/02/2023
|
||||||
%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -29,7 +29,7 @@ function RGB_data = frames_RGBs ()
|
||||||
endwhile
|
endwhile
|
||||||
catch
|
catch
|
||||||
disp('scanned all frames')
|
disp('scanned all frames')
|
||||||
j = 10001
|
j = 10001;
|
||||||
end_try_catch
|
end_try_catch
|
||||||
endwhile
|
endwhile
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -3,14 +3,34 @@ import os.path
|
||||||
import os
|
import os
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
# Opens the Video file
|
###############
|
||||||
|
# def get_frames(input1)
|
||||||
|
# ex. get_frames(video.mov)
|
||||||
|
#
|
||||||
|
# Task: Extracting frames from a video
|
||||||
|
#
|
||||||
|
# Inputs:
|
||||||
|
# - input1: a video
|
||||||
|
#
|
||||||
|
# Output:
|
||||||
|
# -RGB_avg: a directory with all the frames of the video
|
||||||
|
#
|
||||||
|
# author: Loic Delattre and Maryne Dey (loic.delattre@ecam.fr, maryne.dey@ecam.fr)
|
||||||
|
# date: 06/02/2023
|
||||||
|
###############
|
||||||
|
|
||||||
|
|
||||||
video = 'my_face.mov'
|
video = 'my_face.mov'
|
||||||
path_to_script = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
if os.path.exists(path_to_script + r"\frames") == False:
|
|
||||||
os.mkdir(path_to_script + r"\frames")
|
|
||||||
|
|
||||||
def get_frames(vid):
|
def get_frames(vid):
|
||||||
|
path_to_script = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
if os.path.exists(path_to_script + r"\frames") == False:
|
||||||
|
os.mkdir(path_to_script + r"\frames")
|
||||||
|
|
||||||
|
# Opens the Video file
|
||||||
cap= cv2.VideoCapture(vid)
|
cap= cv2.VideoCapture(vid)
|
||||||
|
|
||||||
i=0
|
i=0
|
||||||
while cap.isOpened():
|
while cap.isOpened():
|
||||||
ret, img = cap.read()
|
ret, img = cap.read()
|
||||||
|
|
@ -21,15 +41,15 @@ def get_frames(vid):
|
||||||
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
|
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
|
||||||
|
|
||||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||||
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
faces = face_cascade.detectMultiScale(gray, 1.3, 5) #detect the face in the frame
|
||||||
|
|
||||||
for (x,y,w,h) in faces:
|
for (x,y,w,h) in faces:
|
||||||
# To draw a rectangle in a face
|
# To draw a rectangle in a face for testing purposes
|
||||||
cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
|
cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
|
||||||
roi_gray = gray[y:y+h, x:x+w]
|
roi_gray = gray[y:y+h, x:x+w]
|
||||||
roi_color = img[y:y+h, x:x+w]
|
roi_color = img[y:y+h, x:x+w]
|
||||||
|
|
||||||
eyes = eye_cascade.detectMultiScale(roi_gray)
|
eyes = eye_cascade.detectMultiScale(roi_gray) #detect the eyes in the frames taking the face as reference
|
||||||
list_ex = []
|
list_ex = []
|
||||||
list_ey = []
|
list_ey = []
|
||||||
list_ew = []
|
list_ew = []
|
||||||
|
|
@ -37,7 +57,7 @@ def get_frames(vid):
|
||||||
|
|
||||||
#To draw a rectangle in eyes
|
#To draw a rectangle in eyes
|
||||||
for (ex,ey,ew,eh) in eyes:
|
for (ex,ey,ew,eh) in eyes:
|
||||||
if ew >= 80 and eh >= 80:
|
if ew >= 82 and eh >= 82:
|
||||||
#cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,127,255),2)
|
#cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,127,255),2)
|
||||||
list_ex.append(ex)
|
list_ex.append(ex)
|
||||||
list_ey.append(ey)
|
list_ey.append(ey)
|
||||||
|
|
@ -46,10 +66,10 @@ def get_frames(vid):
|
||||||
|
|
||||||
#rectangle on forhead
|
#rectangle on forhead
|
||||||
try:
|
try:
|
||||||
fx = min(list_ex) + list_ew[list_ex.index(min(list_ex))]
|
fx = min(list_ex) + list_ew[list_ex.index(min(list_ex))] #deducing ROI from the eyes rectangle coordinates
|
||||||
fy = max(list_ey)
|
fy = max(list_ey)
|
||||||
x1 = x + fx
|
x1 = x + fx
|
||||||
x2 = x + fx + 100
|
x2 = x + fx + 100 #extra values in x and y in the parameters are adjustements made after manual testing
|
||||||
y1 = y + fy - 150
|
y1 = y + fy - 150
|
||||||
y2 = y + fy - 20
|
y2 = y + fy - 20
|
||||||
|
|
||||||
|
|
@ -59,8 +79,9 @@ def get_frames(vid):
|
||||||
i+=1
|
i+=1
|
||||||
except:
|
except:
|
||||||
print('error on min value of ex')
|
print('error on min value of ex')
|
||||||
#extra values in x and y in the parameters are adjustements made after manual testing
|
#cv2.rectangle(roi_color, (fx,fy-150),(fx+100,fy-20),(0,127,255),2) #for testing purposes
|
||||||
#cv2.rectangle(roi_color, (fx,fy-150),(fx+100,fy-20),(0,127,255),2)
|
#cv2.imshow('img',roi_color)
|
||||||
|
#cv2.waitKey(0)
|
||||||
|
|
||||||
cap.release()
|
cap.release()
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
||||||
|
|
|
||||||
|
|
@ -10,7 +10,7 @@
|
||||||
% Output:
|
% Output:
|
||||||
% -RGB_avg: a 1x3 matrix with the RGB average values
|
% -RGB_avg: a 1x3 matrix with the RGB average values
|
||||||
%
|
%
|
||||||
% author: Loic Delattre (loic.delattre@ecam.fr)
|
% author: Maryne Dey and Loic Delattre (maryne.dey@ecam.fr, loic.delattre@ecam.fr)
|
||||||
% date: 06/02/2023
|
% date: 06/02/2023
|
||||||
%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,38 +0,0 @@
|
||||||
%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
% Task: Creating FFT of average R,G,B over a period of 30 seconds
|
|
||||||
%
|
|
||||||
% Input:
|
|
||||||
% - CSV file containing the RGB data for each pixels of the region of interest
|
|
||||||
%
|
|
||||||
% Output:
|
|
||||||
% - Fast Fourier Transform of the colors over time
|
|
||||||
%
|
|
||||||
% author: Delattre Loïc, Dey Maryne (loic.delattre@ecam.fr, maryne.dey@ecam.fr)
|
|
||||||
% date: 06/02/2023
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
pkg load io %% to be able to extract from external format (excel)
|
|
||||||
|
|
||||||
data = csvread('RGB_database/RGB_data.csv')
|
|
||||||
standard_deviation = std(data)
|
|
||||||
mean_value = mean(data)
|
|
||||||
|
|
||||||
for i = 1:size(data,1)
|
|
||||||
normalized_data_G(i,1) = (data(i,2)-mean_value(2))/standard_deviation(2); %%2 and not 1 because green is the 2nd color
|
|
||||||
endfor
|
|
||||||
|
|
||||||
fft_green = fft(normalized_data_G)
|
|
||||||
|
|
||||||
plot([1:size(fft_green,1)],fft_green)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
%%For all the colors
|
|
||||||
%%for j = 1:3
|
|
||||||
%% for i = 1:size(data,1)
|
|
||||||
%% normalized_data(i,j) = (data(i,j)-mean_value(j))/standard_deviation(j);
|
|
||||||
%% endfor
|
|
||||||
%%endfor
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
@ -4,7 +4,8 @@ clc
|
||||||
|
|
||||||
threshold = 1e-6;
|
threshold = 1e-6;
|
||||||
|
|
||||||
RGB_data = frames_RGBs ();
|
RGB_data = frames_RGBs ()';
|
||||||
|
length(RGB_data)
|
||||||
|
|
||||||
%TEST 1
|
%TEST 1
|
||||||
%Average of all the items inside of a matrix
|
%Average of all the items inside of a matrix
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue