unchanged from main

This commit is contained in:
Loic Delattre 2023-02-06 14:18:35 +01:00
parent f95730b96d
commit 0bdea59850
1 changed files with 12 additions and 85 deletions

View File

@ -1,71 +1,24 @@
import cv2
from PIL import Image
import csv
import os
import os.path
<<<<<<< Updated upstream
def rep_files_init():
#create a directory to store the RGB datas ouptut
path_to_script = os.path.dirname(os.path.abspath(__file__))
if os.path.exists(path_to_script + r"\RGB database") == False:
os.mkdir(path_to_script + r"\RGB database")
=======
############################
# Task: Initating local files
#
# Input:
# - None
#
# Output:
# - Empty directories to store the RGB data, number of frames stored
#
# author: Delattre Loic, Dey Maryne (loic.delattre@ecam.fr, maryne.dey@ecam.fr)
# date: 06/02/2023
########################
def rep_files_init():
#create a directory to store the RGB datas ouptut
path_to_script = os.path.dirname(os.path.abspath(__file__))
if os.path.exists(path_to_script + r"\RGB_database") == False:
os.mkdir(path_to_script + r"\RGB_database")
onlyfiles = next(os.walk(path_to_script + r"\frames"))[2] #get the amount of frames previously extracted
frames_num = len(onlyfiles)-1
>>>>>>> Stashed changes
onlyfiles = next(os.walk(path_to_script + r"\frames"))[2] #get the amount of frames previously extracted
frames_num = len(onlyfiles)-1
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
image = "frames/frame1.jpg"
read_img = cv2.imread(image)
return frames_num
#cv2.imshow('img',imRGB)
#cv2.waitKey(0)
############################
# Task: Extracting the RGB values from every pixel in a given frame
#
# Input:
# - A frame of the face video, the frame number
#
# Output:
# - Three lists containing all of the RGB values of the specific frame
#
# author: Delattre Loic, Dey Maryne (loic.delattre@ecam.fr, maryne.dey@ecam.fr)
# date: 06/02/2023
########################
def RGB_dataframe(img, itr):
<<<<<<< Updated upstream
=======
img = cv2.imread(image)
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
>>>>>>> Stashed changes
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
@ -96,7 +49,7 @@ def RGB_dataframe(img, itr):
#extra values in x and y in the parameters are adjustements made after manual testing
cv2.rectangle(roi_color, (fx,fy-150),(fx+100,fy-20),(0,127,255),2)
'''imS = cv2.resize(img, (960, 540))
imS = cv2.resize(img, (960, 540))
#cv2.imshow('img',imS)
#cv2.waitKey(0)
x1 = x + fx
@ -108,35 +61,19 @@ def RGB_dataframe(img, itr):
#cv2.imshow('img',imRGB)
#cv2.waitKey(0)
R = []
G = []
B = []
size_list = list(imRGB.shape[:2])
pixel_values = []
for i in range(0, size_list[0]):
for j in range(0, size_list[1]):
k = imRGB[i,j]
<<<<<<< Updated upstream
pixel_values.append(k)
fields = ['R', 'G', 'B']
with open('RGB database/RGB' + str(itr) + '_data.csv', 'w', newline="") as f:
=======
R.append(k[0])
G.append(k[1])
B.append(k[2])'''
B.append(k[2])
return R, G, B
############################
# Task: Exporting to a csv file the RGB traces averages of all the frame of a given video
#
# Input:
# - a folder with all the frames of one video
#
# Output:
# - One CSV with all RGB average dats
#
# author: Delattre Loic, Dey Maryne (loic.delattre@ecam.fr, maryne.dey@ecam.fr)
# date: 06/02/2023
########################
def average_and_export():
i = 0
count = 0.1
@ -145,9 +82,10 @@ def average_and_export():
while i < frames_num:
i += 1
image = "frames/frame" + str(i) + ".jpg"
read_img = cv2.imread(image)
#Bug here inside of func with min funcs of empty data
try:
out_colors = RGB_dataframe(image, i)
out_colors = RGB_dataframe(read_img, i)
except:
out_colors = out_colors
Ravg = sum(out_colors[0])/len(out_colors[0])
@ -160,20 +98,9 @@ def average_and_export():
with open('RGB database/RGB_data.csv', 'w', newline="") as f:
fields = ['R', 'G', 'B']
>>>>>>> Stashed changes
write = csv.writer(f)
write.writerow(fields)
write.writerows(pixel_values)
return
<<<<<<< Updated upstream
i = 0
count = 0.1
while i < frames_num:
i += 1
RGB_dataframe(read_img, i)
if i/frames_num >= count:
print(str(round(count*100))+ "% of the database exported to csv")
count += 0.1
=======
>>>>>>> Stashed changes
average_and_export()