PPG_Delattre_Dey/FFT.m

47 lines
1.2 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%
% Script task: Normalize RGB data and plot FFT using the power spectra
%
% Input : RGB_data.csv -> average RGB values of each image
%
% Output : Fast Fourier Transform of X(t): a graph representing the Single-Sided Amplitude Spectrum of X(t)
%
% Author: Maryne DEY (maryne.dey@ecam.fr)
% Date: 07/02/2023
%%%%%%%%%%%%%%%%%%%%%
clear all
close all
clc
pkg load io %% to be able to extract from external format (excel)
data = csvread('RGB_database/RGB_data.csv');
standard_deviation = std(data);
mean_value = mean(data);
for i = 1:size(data,1)
normalized_data_G(i,1) = (data(i,2)-mean_value(2))/standard_deviation(2); %%2 and not 1 because green is the 2nd color
endfor
Fs = 970/32; % Sampling frequency = 970 images in 32 seconds
T = 1/Fs; % Sampling period
L = 970; % Length of signal = 32 seconds
t = (0:L-1)*T; % Time vector
X = normalized_data_G;
plot(t(1:970),X(1:970))
title("Signal")
xlabel("t (milliseconds)")
ylabel("X(t)")
Y = fft(X);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1)
f = Fs*(0:(L/2))/L
plot(f(25:end),P1(25:end))
title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")