Compare commits

..

No commits in common. "master" and "featureSpectAnalysis" have entirely different histories.

20 changed files with 12 additions and 131 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

View File

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 53 KiB

View File

@ -1,114 +0,0 @@
clear all
close all
clc
% Modify the desired frequency for the whole code here
desired_freq = 4000;
% Read and Set up coeficient
[y, fs] = audioread("sound/modulator22.wav");
decrease_coef = round(fs/desired_freq);
% Modify Signal with downsample
% Only keeps one sample out of decrease_coef
down_y = downsample(y,decrease_coef);
down_fs = fs/decrease_coef;
audiowrite("sound/down_output.wav", down_y, down_fs);
% Plot Down Modified
plot(0:1/down_fs:(length(down_y)-1)/down_fs,down_y);
xlabel("Time (s)");
ylabel("Amplitude");
title("Downsample Sound Amplitude Over Time");
% Modify Signal with decimate
% Only keeps one sample out of decrease_coef
deci_y = decimate(y,decrease_coef);
deci_fs = fs/decrease_coef;
audiowrite("sound/deci_output.wav", deci_y, deci_fs);
% Plot Down Modified
figure;
plot(0:1/deci_fs:(length(deci_y)-1)/deci_fs,deci_y);
xlabel("Time (s)");
ylabel("Amplitude");
title("Decimate Sound Amplitude Over Time");
% Filter Signal with FIR filter
order = 30;
cutoff_freq = 1000; % in Hz
fir_b = fir1(order, cutoff_freq/(fs/2));
% Show Filter
figure
freqz(fir_b)
% Apply filter
fir_y = filter(fir_b, 1, y);
audiowrite("sound/fir_output.wav", fir_y, fs);
% Plot Down Modified
figure;
plot(0:1/fs:(length(fir_y)-1)/fs,fir_y);
xlabel("Time (s)");
ylabel("Amplitude");
title("FIR Filter Sound Amplitude Over Time");
% Filter Signal with Butter filter
order = 8;
cutoff_freq = 1000; % in Hz
[b, a] = butter(order, cutoff_freq/(fs/2), 'low');
% Show Filter
figure
freqz(b)
% Apply filter
butt_y = filter(b, a, y);
audiowrite("sound/butt_output.wav", butt_y, fs);
% Plot Down Modified
figure;
plot(0:1/fs:(length(butt_y)-1)/fs,butt_y);
xlabel("Time (s)");
ylabel("Amplitude");
title("Butter Filter Sound Amplitude Over Time");
% Test FIR Filter Stability
% Find the transfer function
H = tf(fir_b, 1);
% Get the poles of the transfer function
poles = pole(H);
% Check if all poles are inside the unit circle
if all(abs(poles) < 1)
disp('The FIR filter is stable');
else
disp('The FIR filter is unstable');
end
% Test Butter Filter Stability
% Find the transfer function
H = tf(b, a);
% Get the poles of the transfer function
poles = pole(H);
% Check if all poles are inside the unit circle
if all(abs(poles) < 1)
disp('The Butter filter is stable');
else
disp('The Butter filter is unstable');
end
% Modify Signal with downsample
% Only keeps one sample out of decrease_coef
down_fir_y = downsample(fir_y,decrease_coef);
down_fir_fs = fs/decrease_coef;
audiowrite("sound/down_fir_output.wav", down_fir_y, down_fir_fs);
% Plot Down Modified
figure
plot(0:1/down_fir_fs:(length(down_fir_y)-1)/down_fir_fs,down_fir_y);
xlabel("Time (s)");
ylabel("Amplitude");
title("Downsample FIR Sound Amplitude Over Time");
% Modify Signal with downsample
% Only keeps one sample out of decrease_coef
down_butt_y = downsample(butt_y,decrease_coef);
down_butt_fs = fs/decrease_coef;
audiowrite("sound/down_butt_output.wav", down_butt_y, down_butt_fs);
% Plot Down Modified
figure
plot(0:1/down_butt_fs:(length(down_butt_y)-1)/down_butt_fs,down_butt_y);
xlabel("Time (s)");
ylabel("Amplitude");
title("Downsample Butter Sound Amplitude Over Time");

BIN
one.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 263 KiB

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -3,37 +3,32 @@ close all
clc
[y, fs] = audioread("sound/modulator22.wav");
ranges = [17000, 21000; 30500, 36000; 41500, 46000];
ranges = [17000, 20000; 29000, 37000; 41000, 46000];
one = y(ranges(1,1):ranges(1,2));
two = y(ranges(2,1):ranges(2,2));
three = y(ranges(3,1):ranges(3,2));
word = three;
word = one;
n = length(word);
f = (0:n-1)*(fs/n);
f1 = 0;%Hz
f2 = 2500;%Hz
f2 = 4000;%Hz
idx = find(f >= f1 & f <= f2); %define the index of the freq range
f = f(idx);
y = fft(word, n);% compute DFT of input signal
power = abs(y).^2/n;
power = power(idx);%limit the signal to the frequency ROI
power = power(idx);
[val, ind] = max(power);
%lowpass for the formant, moving average
%lowpass for the formant
Fc = 2000; % define the cutoff frequency of the low-pass filter
[b, a] = butter(6, Fc/(fs/2), 'low'); % design a 4th-order Butterworth low-pass filter
Pxx_filt = filter(b, a, power); % apply the filter to the power spectrum
length(Pxx_filt)
length(f)
for j = 1:length(idx)
tot = 0;
for k = j-18:j
if k <=0
tot = tot + power(1);
else
tot = tot + power(k);
endif
endfor
power_avg(j) = 1/6*(tot);
endfor
figure;
@ -44,7 +39,7 @@ ylabel('Amplitude (a.u.)');
subplot(1,2,2) % freq range plot
plot(f,10*log10(power/power(ind))); hold on;
plot(f, 10*log10(power_avg/power(ind)), 'r');
plot(f, 10*log10(Pxx_filt), 'r');
xlabel('Frequency (Hz)')
ylabel('Power (dB)')

BIN
three.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

After

Width:  |  Height:  |  Size: 71 KiB

BIN
two.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

After

Width:  |  Height:  |  Size: 80 KiB