le bon c'est calibrate.py avec les datas dans le dossier damier puis left et right
54
calib.py
|
|
@ -1,10 +1,11 @@
|
||||||
|
|
||||||
#retval, corners = cv2.findChessboardCorners(image,patternSize, flags)
|
#retval, corners = cv2.findChessboardCorners(image,patternSize, flags)
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# Define the size of the chessboard
|
# Define the size of the chessboard
|
||||||
chessboard_size = (22, 16)
|
chessboard_size = (8,5)
|
||||||
|
|
||||||
# Define the object points of the chessboard
|
# Define the object points of the chessboard
|
||||||
object_points = np.zeros((np.prod(chessboard_size), 3), dtype=np.float32)
|
object_points = np.zeros((np.prod(chessboard_size), 3), dtype=np.float32)
|
||||||
|
|
@ -12,12 +13,12 @@ object_points[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.re
|
||||||
|
|
||||||
# Create arrays to store the object points and image points from all the images
|
# Create arrays to store the object points and image points from all the images
|
||||||
object_points_array = []
|
object_points_array = []
|
||||||
image_points_array = []
|
image_points_array1 = []
|
||||||
|
image_points_array2 = []
|
||||||
|
|
||||||
# Load the images
|
# Load the images
|
||||||
images = []
|
images = []
|
||||||
images.append(cv2.imread("/home/ros/Bureau/ca_ur5/left.jpg"))
|
images.append(cv2.imread("/home/ros/Bureau/ca_ur5/1.jpg"))
|
||||||
images.append(cv2.imread("/home/ros/Bureau/ca_ur5/left2.jpg"))
|
|
||||||
# Add more images as needed
|
# Add more images as needed
|
||||||
|
|
||||||
# Loop through each image and find the chessboard corners
|
# Loop through each image and find the chessboard corners
|
||||||
|
|
@ -30,14 +31,55 @@ for image in images:
|
||||||
# If the corners are found, add the object points and image points to the arrays
|
# If the corners are found, add the object points and image points to the arrays
|
||||||
if found:
|
if found:
|
||||||
object_points_array.append(object_points)
|
object_points_array.append(object_points)
|
||||||
image_points_array.append(corners)
|
image_points_array1.append(corners)
|
||||||
|
|
||||||
# Calibrate the camera using the object points and image points
|
# Calibrate the camera using the object points and image points
|
||||||
ret, camera_matrix, distortion_coefficients, rotation_vectors, translation_vectors = cv2.calibrateCamera(
|
ret, camera_matrix, distortion_coefficients, rotation_vectors, translation_vectors = cv2.calibrateCamera(
|
||||||
object_points_array, image_points_array, gray.shape[::-1], None, None)
|
object_points_array, image_points_array1, gray.shape[::-1], None, None)
|
||||||
|
|
||||||
# Print the camera matrix and distortion coefficients
|
# Print the camera matrix and distortion coefficients
|
||||||
print("Camera matrix:")
|
print("Camera matrix:")
|
||||||
print(camera_matrix)
|
print(camera_matrix)
|
||||||
print("Distortion coefficients:")
|
print("Distortion coefficients:")
|
||||||
print(distortion_coefficients)
|
print(distortion_coefficients)
|
||||||
|
|
||||||
|
|
||||||
|
# Load the images
|
||||||
|
images = []
|
||||||
|
images.append(cv2.imread("/home/ros/Bureau/ca_ur5/2.jpg"))
|
||||||
|
# Add more images as needed
|
||||||
|
|
||||||
|
# Loop through each image and find the chessboard corners
|
||||||
|
for image in images:
|
||||||
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
# Find the chessboard corners
|
||||||
|
found, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
|
||||||
|
|
||||||
|
# If the corners are found, add the object points and image points to the arrays
|
||||||
|
if found:
|
||||||
|
object_points_array.append(object_points)
|
||||||
|
image_points_array2.append(corners)
|
||||||
|
|
||||||
|
# Calibrate the camera using the object points and image points
|
||||||
|
ret, camera_matrix, distortion_coefficients, rotation_vectors, translation_vectors = cv2.calibrateCamera(
|
||||||
|
object_points_array, image_points_array2, gray.shape[::-1], None, None)
|
||||||
|
|
||||||
|
# Print the camera matrix and distortion coefficients
|
||||||
|
print("Camera matrix:")
|
||||||
|
print(camera_matrix)
|
||||||
|
print("Distortion coefficients:")
|
||||||
|
print(distortion_coefficients)
|
||||||
|
|
||||||
|
print("Stereo calib")
|
||||||
|
|
||||||
|
flags = 0
|
||||||
|
flags |= cv2.CALIB_FIX_INTRINSIC
|
||||||
|
# Here we fix the intrinsic camara matrixes so that only Rot, Trns, Emat and Fmat are calculated.
|
||||||
|
# Hence intrinsic parameters are the same
|
||||||
|
|
||||||
|
criteria_stereo= (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||||
|
|
||||||
|
|
||||||
|
# This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
|
||||||
|
retS, new_mtxL, distL, new_mtxR, distR, Rot, Trns, Emat, Fmat = cv2.stereoCalibrate(object_points_array, image_points_array1, image_points_array2, new_mtxL, distL, new_mtxR, distR, imgL_gray.shape[::-1], criteria_stereo, flags)
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,54 @@
|
||||||
|
# Set the path to the images captured by the left and right cameras
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import tqdm as tqdm
|
||||||
|
|
||||||
|
pathL = "/home/ros/Bureau/ca_ur5/1.jpg"
|
||||||
|
pathR = "/home/ros/Bureau/ca_ur5/2.jpg"
|
||||||
|
|
||||||
|
# Termination criteria for refining the detected corners
|
||||||
|
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||||
|
|
||||||
|
|
||||||
|
objp = np.zeros((8*5,3), np.float32)
|
||||||
|
objp[:,:2] = np.mgrid[0:8,0:5].T.reshape(-1,2)
|
||||||
|
|
||||||
|
img_ptsL = []
|
||||||
|
img_ptsR = []
|
||||||
|
obj_pts = []
|
||||||
|
|
||||||
|
for i in tqdm(range(1,12)):
|
||||||
|
imgL = cv2.imread(pathL+"img%d.png"%i)
|
||||||
|
imgR = cv2.imread(pathR+"img%d.png"%i)
|
||||||
|
imgL_gray = cv2.imread(pathL+"img%d.png"%i,0)
|
||||||
|
imgR_gray = cv2.imread(pathR+"img%d.png"%i,0)
|
||||||
|
|
||||||
|
outputL = imgL.copy()
|
||||||
|
outputR = imgR.copy()
|
||||||
|
|
||||||
|
retR, cornersR = cv2.findChessboardCorners(outputR,(8,5),None)
|
||||||
|
retL, cornersL = cv2.findChessboardCorners(outputL,(8,5),None)
|
||||||
|
|
||||||
|
if retR and retL:
|
||||||
|
obj_pts.append(objp)
|
||||||
|
cv2.cornerSubPix(imgR_gray,cornersR,(11,11),(-1,-1),criteria)
|
||||||
|
cv2.cornerSubPix(imgL_gray,cornersL,(11,11),(-1,-1),criteria)
|
||||||
|
cv2.drawChessboardCorners(outputR,(8,5),cornersR,retR)
|
||||||
|
cv2.drawChessboardCorners(outputL,(8,5),cornersL,retL)
|
||||||
|
cv2.imshow('cornersR',outputR)
|
||||||
|
cv2.imshow('cornersL',outputL)
|
||||||
|
cv2.waitKey(0)
|
||||||
|
|
||||||
|
img_ptsL.append(cornersL)
|
||||||
|
img_ptsR.append(cornersR)
|
||||||
|
|
||||||
|
|
||||||
|
# Calibrating left camera
|
||||||
|
retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(obj_pts,img_ptsL,imgL_gray.shape[::-1],None,None)
|
||||||
|
hL,wL= imgL_gray.shape[:2]
|
||||||
|
new_mtxL, roiL= cv2.getOptimalNewCameraMatrix(mtxL,distL,(wL,hL),1,(wL,hL))
|
||||||
|
|
||||||
|
# Calibrating right camera
|
||||||
|
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(obj_pts,img_ptsR,imgR_gray.shape[::-1],None,None)
|
||||||
|
hR,wR= imgR_gray.shape[:2]
|
||||||
|
new_mtxR, roiR= cv2.getOptimalNewCameraMatrix(mtxR,distR,(wR,hR),1,(wR,hR))
|
||||||
|
|
@ -0,0 +1,107 @@
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
# Set the path to the images captured by the left and right cameras
|
||||||
|
pathL = "/home/ros/Bureau/ca_ur5/damier/Left/"
|
||||||
|
pathR = "/home/ros/Bureau/ca_ur5/damier/Right/"
|
||||||
|
|
||||||
|
print("Extracting image coordinates of respective 3D pattern ....\n")
|
||||||
|
|
||||||
|
# Termination criteria for refining the detected corners
|
||||||
|
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||||
|
|
||||||
|
|
||||||
|
objp = np.zeros((8*5,3), np.float32)
|
||||||
|
objp[:,:2] = np.mgrid[0:8,0:5].T.reshape(-1,2)
|
||||||
|
|
||||||
|
img_ptsL = []
|
||||||
|
img_ptsR = []
|
||||||
|
obj_pts = []
|
||||||
|
|
||||||
|
for i in tqdm(range(1,5)):
|
||||||
|
imgL = cv2.imread(pathL+"L%d.jpg"%i)
|
||||||
|
imgR = cv2.imread(pathR+"R%d.jpg"%i)
|
||||||
|
imgL_gray = cv2.imread(pathL+"L%d.jpg"%i,0)
|
||||||
|
imgR_gray = cv2.imread(pathR+"R%d.jpg"%i,0)
|
||||||
|
|
||||||
|
|
||||||
|
outputL = imgL.copy()
|
||||||
|
outputR = imgR.copy()
|
||||||
|
|
||||||
|
retR, cornersR = cv2.findChessboardCorners(outputR,(8,5),None)
|
||||||
|
retL, cornersL = cv2.findChessboardCorners(outputL,(8,5),None)
|
||||||
|
|
||||||
|
if retR and retL:
|
||||||
|
|
||||||
|
obj_pts.append(objp)
|
||||||
|
cv2.cornerSubPix(imgR_gray,cornersR,(11,11),(-1,-1),criteria)
|
||||||
|
cv2.cornerSubPix(imgL_gray,cornersL,(11,11),(-1,-1),criteria)
|
||||||
|
cv2.drawChessboardCorners(outputR,(8,5),cornersR,retR)
|
||||||
|
cv2.drawChessboardCorners(outputL,(8,5),cornersL,retL)
|
||||||
|
cv2.imshow('cornersR',outputR)
|
||||||
|
cv2.imshow('cornersL',outputL)
|
||||||
|
cv2.waitKey(0)
|
||||||
|
|
||||||
|
img_ptsL.append(cornersL)
|
||||||
|
img_ptsR.append(cornersR)
|
||||||
|
|
||||||
|
|
||||||
|
print("Calculating left camera parameters ... ")
|
||||||
|
# Calibrating left camera
|
||||||
|
retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(obj_pts,img_ptsL,imgL_gray.shape[::-1],None,None)
|
||||||
|
hL,wL= imgL_gray.shape[:2]
|
||||||
|
new_mtxL, roiL= cv2.getOptimalNewCameraMatrix(mtxL,distL,(wL,hL),1,(wL,hL))
|
||||||
|
|
||||||
|
print("Calculating right camera parameters ... ")
|
||||||
|
# Calibrating right camera
|
||||||
|
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(obj_pts,img_ptsR,imgR_gray.shape[::-1],None,None)
|
||||||
|
hR,wR= imgR_gray.shape[:2]
|
||||||
|
new_mtxR, roiR= cv2.getOptimalNewCameraMatrix(mtxR,distR,(wR,hR),1,(wR,hR))
|
||||||
|
|
||||||
|
|
||||||
|
print("Stereo calibration .....")
|
||||||
|
flags = 0
|
||||||
|
flags |= cv2.CALIB_FIX_INTRINSIC
|
||||||
|
# Here we fix the intrinsic camara matrixes so that only Rot, Trns, Emat and Fmat are calculated.
|
||||||
|
# Hence intrinsic parameters are the same
|
||||||
|
|
||||||
|
criteria_stereo= (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||||
|
|
||||||
|
|
||||||
|
# This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
|
||||||
|
retS, new_mtxL, distL, new_mtxR, distR, Rot, Trns, Emat, Fmat = cv2.stereoCalibrate(obj_pts,
|
||||||
|
img_ptsL,
|
||||||
|
img_ptsR,
|
||||||
|
new_mtxL,
|
||||||
|
distL,
|
||||||
|
new_mtxR,
|
||||||
|
distR,
|
||||||
|
imgL_gray.shape[::-1],
|
||||||
|
criteria_stereo,
|
||||||
|
flags)
|
||||||
|
|
||||||
|
# Once we know the transformation between the two cameras we can perform stereo rectification
|
||||||
|
# StereoRectify function
|
||||||
|
rectify_scale= 1 # if 0 image croped, if 1 image not croped
|
||||||
|
rect_l, rect_r, proj_mat_l, proj_mat_r, Q, roiL, roiR= cv2.stereoRectify(new_mtxL, distL, new_mtxR, distR,
|
||||||
|
imgL_gray.shape[::-1], Rot, Trns,
|
||||||
|
rectify_scale,(0,0))
|
||||||
|
|
||||||
|
# Use the rotation matrixes for stereo rectification and camera intrinsics for undistorting the image
|
||||||
|
# Compute the rectification map (mapping between the original image pixels and
|
||||||
|
# their transformed values after applying rectification and undistortion) for left and right camera frames
|
||||||
|
Left_Stereo_Map= cv2.initUndistortRectifyMap(new_mtxL, distL, rect_l, proj_mat_l,
|
||||||
|
imgL_gray.shape[::-1], cv2.CV_16SC2)
|
||||||
|
Right_Stereo_Map= cv2.initUndistortRectifyMap(new_mtxR, distR, rect_r, proj_mat_r,
|
||||||
|
imgR_gray.shape[::-1], cv2.CV_16SC2)
|
||||||
|
|
||||||
|
|
||||||
|
print("Saving parameters ......")
|
||||||
|
cv_file = cv2.FileStorage("data/params_py.xml", cv2.FILE_STORAGE_WRITE)
|
||||||
|
cv_file.write("Left_Stereo_Map_x",Left_Stereo_Map[0])
|
||||||
|
cv_file.write("Left_Stereo_Map_y",Left_Stereo_Map[1])
|
||||||
|
cv_file.write("Right_Stereo_Map_x",Right_Stereo_Map[0])
|
||||||
|
cv_file.write("Right_Stereo_Map_y",Right_Stereo_Map[1])
|
||||||
|
cv_file.release()
|
||||||
|
After Width: | Height: | Size: 65 KiB |
|
After Width: | Height: | Size: 69 KiB |
|
After Width: | Height: | Size: 65 KiB |
|
After Width: | Height: | Size: 63 KiB |
|
After Width: | Height: | Size: 65 KiB |
|
After Width: | Height: | Size: 70 KiB |
|
After Width: | Height: | Size: 65 KiB |
|
After Width: | Height: | Size: 64 KiB |
|
Before Width: | Height: | Size: 167 KiB |
|
Before Width: | Height: | Size: 168 KiB |
|
Before Width: | Height: | Size: 156 KiB |
|
Before Width: | Height: | Size: 156 KiB |
|
Before Width: | Height: | Size: 157 KiB |
|
Before Width: | Height: | Size: 156 KiB |
|
Before Width: | Height: | Size: 164 KiB |
BIN
damier/right.jpg
|
Before Width: | Height: | Size: 102 KiB |
|
|
@ -0,0 +1,12 @@
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
flags = 0
|
||||||
|
flags |= cv2.CALIB_FIX_INTRINSIC
|
||||||
|
# Here we fix the intrinsic camara matrixes so that only Rot, Trns, Emat and Fmat are calculated.
|
||||||
|
# Hence intrinsic parameters are the same
|
||||||
|
|
||||||
|
criteria_stereo= (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||||
|
|
||||||
|
|
||||||
|
# This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
|
||||||
|
retS, new_mtxL, distL, new_mtxR, distR, Rot, Trns, Emat, Fmat = cv2.stereoCalibrate(obj_pts, img_ptsL, img_ptsR, new_mtxL, distL, new_mtxR, distR, imgL_gray.shape[::-1], criteria_stereo, flags)
|
||||||