114 lines
4.4 KiB
Python
114 lines
4.4 KiB
Python
import numpy as np
|
|
import cv2
|
|
from tqdm import tqdm
|
|
|
|
|
|
# Set the path to the images captured by the left and right cameras
|
|
pathL = "/home/ros/Bureau/ca_ur5/damier/Left/"
|
|
pathR = "/home/ros/Bureau/ca_ur5/damier/Right/"
|
|
|
|
print("Extracting image coordinates of respective 3D pattern ....\n")
|
|
|
|
# Termination criteria for refining the detected corners
|
|
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
|
|
|
|
|
objp = np.zeros((21*15,3), np.float32)
|
|
objp[:,:2] = np.mgrid[0:21,0:15].T.reshape(-1,2)
|
|
|
|
img_ptsL = []
|
|
img_ptsR = []
|
|
obj_pts = []
|
|
|
|
for i in tqdm(range(1,6)): #number of images
|
|
imgL = cv2.imread(pathL+"L%d.jpg"%i)
|
|
imgR = cv2.imread(pathR+"R%d.jpg"%i)
|
|
imgL_gray = cv2.imread(pathL+"L%d.jpg"%i,0)
|
|
imgR_gray = cv2.imread(pathR+"R%d.jpg"%i,0)
|
|
|
|
|
|
outputL = imgL.copy()
|
|
outputR = imgR.copy()
|
|
|
|
|
|
retR, cornersR = cv2.findChessboardCorners(outputR,(21,15),None)
|
|
retL, cornersL = cv2.findChessboardCorners(outputL,(21,15),None)
|
|
print("ret R is",retR)
|
|
print("ret L is",retL)
|
|
|
|
|
|
|
|
|
|
if retR and retL:
|
|
|
|
obj_pts.append(objp)
|
|
cv2.cornerSubPix(imgR_gray,cornersR,(11,11),(-1,-1),criteria)
|
|
cv2.cornerSubPix(imgL_gray,cornersL,(11,11),(-1,-1),criteria)
|
|
cv2.drawChessboardCorners(outputR,(21,15),cornersR,retR)
|
|
cv2.drawChessboardCorners(outputL,(21,15),cornersL,retL)
|
|
cv2.imshow('cornersR',outputR)
|
|
cv2.imshow('cornersL',outputL)
|
|
cv2.waitKey(0)
|
|
|
|
img_ptsL.append(cornersL)
|
|
img_ptsR.append(cornersR)
|
|
|
|
|
|
print("Calculating left camera parameters ... ")
|
|
# Calibrating left camera
|
|
retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(obj_pts,img_ptsL,imgL_gray.shape[::-1],None,None)
|
|
hL,wL= imgL_gray.shape[:2]
|
|
new_mtxL, roiL= cv2.getOptimalNewCameraMatrix(mtxL,distL,(wL,hL),1,(wL,hL))
|
|
|
|
print("Calculating right camera parameters ... ")
|
|
# Calibrating right camera
|
|
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(obj_pts,img_ptsR,imgR_gray.shape[::-1],None,None)
|
|
hR,wR= imgR_gray.shape[:2]
|
|
new_mtxR, roiR= cv2.getOptimalNewCameraMatrix(mtxR,distR,(wR,hR),1,(wR,hR))
|
|
|
|
|
|
print("Stereo calibration .....")
|
|
flags = 0
|
|
flags |= cv2.CALIB_FIX_INTRINSIC
|
|
# Here we fix the intrinsic camara matrixes so that only Rot, Trns, Emat and Fmat are calculated.
|
|
# Hence intrinsic parameters are the same
|
|
|
|
criteria_stereo= (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
|
|
|
|
|
# This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
|
|
retS, new_mtxL, distL, new_mtxR, distR, Rot, Trns, Emat, Fmat = cv2.stereoCalibrate(obj_pts,
|
|
img_ptsL,
|
|
img_ptsR,
|
|
new_mtxL,
|
|
distL,
|
|
new_mtxR,
|
|
distR,
|
|
imgL_gray.shape[::-1],
|
|
criteria_stereo,
|
|
flags)
|
|
|
|
# Once we know the transformation between the two cameras we can perform stereo rectification
|
|
# StereoRectify function
|
|
rectify_scale= 1 # if 0 image croped, if 1 image not croped
|
|
rect_l, rect_r, proj_mat_l, proj_mat_r, Q, roiL, roiR= cv2.stereoRectify(new_mtxL, distL, new_mtxR, distR,
|
|
imgL_gray.shape[::-1], Rot, Trns,
|
|
rectify_scale,(0,0))
|
|
|
|
# Use the rotation matrixes for stereo rectification and camera intrinsics for undistorting the image
|
|
# Compute the rectification map (mapping between the original image pixels and
|
|
# their transformed values after applying rectification and undistortion) for left and right camera frames
|
|
Left_Stereo_Map= cv2.initUndistortRectifyMap(new_mtxL, distL, rect_l, proj_mat_l,
|
|
imgL_gray.shape[::-1], cv2.CV_16SC2)
|
|
Right_Stereo_Map= cv2.initUndistortRectifyMap(new_mtxR, distR, rect_r, proj_mat_r,
|
|
imgR_gray.shape[::-1], cv2.CV_16SC2)
|
|
|
|
|
|
print("Saving parameters ......")
|
|
cv_file = cv2.FileStorage("data/params_py.xml", cv2.FILE_STORAGE_WRITE)
|
|
cv_file.write("Left_Stereo_Map_x",Left_Stereo_Map[0])
|
|
cv_file.write("Left_Stereo_Map_y",Left_Stereo_Map[1])
|
|
cv_file.write("Right_Stereo_Map_x",Right_Stereo_Map[0])
|
|
cv_file.write("Right_Stereo_Map_y",Right_Stereo_Map[1])
|
|
cv_file.release()
|