144 lines
5.1 KiB
Python
144 lines
5.1 KiB
Python
import numpy as np
|
|
import cv2
|
|
|
|
|
|
# Check for left and right camera IDs
|
|
# These values can change depending on the system
|
|
CamL_id = 2# Camera ID for left camera
|
|
CamR_id = 0# Camera ID for right camera
|
|
|
|
#CamL= cv2.VideoCapture(CamL_id)
|
|
#CamR= cv2.VideoCapture(CamR_id)
|
|
|
|
|
|
|
|
|
|
retL, imgL= cv2.VideoCapture(CamL_id, cv2.CAP_V4L2).read()
|
|
retR, imgR= cv2.VideoCapture(CamR_id, cv2.CAP_V4L2).read()
|
|
|
|
imgR_gray = cv2.cvtColor(imgR,cv2.COLOR_BGR2GRAY)
|
|
imgL_gray = cv2.cvtColor(imgL,cv2.COLOR_BGR2GRAY)
|
|
|
|
print("la c bon")
|
|
# Reading the mapping values for stereo image rectification
|
|
cv_file = cv2.FileStorage("data/params_py.xml", cv2.FILE_STORAGE_READ)
|
|
Left_Stereo_Map_x = cv_file.getNode("Left_Stereo_Map_x").mat()
|
|
Left_Stereo_Map_y = cv_file.getNode("Left_Stereo_Map_y").mat()
|
|
Right_Stereo_Map_x = cv_file.getNode("Right_Stereo_Map_x").mat()
|
|
Right_Stereo_Map_y = cv_file.getNode("Right_Stereo_Map_y").mat()
|
|
cv_file.release()
|
|
|
|
def nothing(x):
|
|
pass
|
|
|
|
cv2.namedWindow('disp',cv2.WINDOW_NORMAL)
|
|
cv2.resizeWindow('disp',600,600)
|
|
|
|
cv2.createTrackbar('numDisparities','disp',1,17,nothing)
|
|
cv2.createTrackbar('blockSize','disp',5,50,nothing)
|
|
cv2.createTrackbar('preFilterType','disp',1,1,nothing)
|
|
cv2.createTrackbar('preFilterSize','disp',2,25,nothing)
|
|
cv2.createTrackbar('preFilterCap','disp',5,62,nothing)
|
|
cv2.createTrackbar('textureThreshold','disp',10,100,nothing)
|
|
cv2.createTrackbar('uniquenessRatio','disp',15,100,nothing)
|
|
cv2.createTrackbar('speckleRange','disp',0,100,nothing)
|
|
cv2.createTrackbar('speckleWindowSize','disp',3,25,nothing)
|
|
cv2.createTrackbar('disp12MaxDiff','disp',5,25,nothing)
|
|
cv2.createTrackbar('minDisparity','disp',5,25,nothing)
|
|
|
|
# Creating an object of StereoBM algorithm
|
|
stereo = cv2.StereoBM_create()
|
|
while True:
|
|
|
|
# Capturing and storing left and right camera images
|
|
retL, imgL= cv2.VideoCapture(CamL_id, cv2.CAP_V4L2).read()
|
|
retR, imgR= cv2.VideoCapture(CamR_id, cv2.CAP_V4L2).read()
|
|
|
|
# Proceed only if the frames have been captured
|
|
if retL and retR:
|
|
imgR_gray = cv2.cvtColor(imgR,cv2.COLOR_BGR2GRAY)
|
|
imgL_gray = cv2.cvtColor(imgL,cv2.COLOR_BGR2GRAY)
|
|
|
|
# Applying stereo image rectification on the left image
|
|
Left_nice= cv2.remap(imgL_gray,
|
|
Left_Stereo_Map_x,
|
|
Left_Stereo_Map_y,
|
|
cv2.INTER_LANCZOS4,
|
|
cv2.BORDER_CONSTANT,
|
|
0)
|
|
|
|
# Applying stereo image rectification on the right image
|
|
Right_nice= cv2.remap(imgR_gray,
|
|
Right_Stereo_Map_x,
|
|
Right_Stereo_Map_y,
|
|
cv2.INTER_LANCZOS4,
|
|
cv2.BORDER_CONSTANT,
|
|
0)
|
|
|
|
# Updating the parameters based on the trackbar positions
|
|
numDisparities = cv2.getTrackbarPos('numDisparities','disp')*16
|
|
blockSize = cv2.getTrackbarPos('blockSize','disp')*2 + 5
|
|
preFilterType = cv2.getTrackbarPos('preFilterType','disp')
|
|
preFilterSize = cv2.getTrackbarPos('preFilterSize','disp')*2 + 5
|
|
preFilterCap = cv2.getTrackbarPos('preFilterCap','disp')
|
|
textureThreshold = cv2.getTrackbarPos('textureThreshold','disp')
|
|
uniquenessRatio = cv2.getTrackbarPos('uniquenessRatio','disp')
|
|
speckleRange = cv2.getTrackbarPos('speckleRange','disp')
|
|
speckleWindowSize = cv2.getTrackbarPos('speckleWindowSize','disp')*2
|
|
disp12MaxDiff = cv2.getTrackbarPos('disp12MaxDiff','disp')
|
|
minDisparity = cv2.getTrackbarPos('minDisparity','disp')
|
|
|
|
# Setting the updated parameters before computing disparity map
|
|
stereo.setNumDisparities(numDisparities)
|
|
stereo.setBlockSize(blockSize)
|
|
stereo.setPreFilterType(preFilterType)
|
|
stereo.setPreFilterSize(preFilterSize)
|
|
stereo.setPreFilterCap(preFilterCap)
|
|
stereo.setTextureThreshold(textureThreshold)
|
|
stereo.setUniquenessRatio(uniquenessRatio)
|
|
stereo.setSpeckleRange(speckleRange)
|
|
stereo.setSpeckleWindowSize(speckleWindowSize)
|
|
stereo.setDisp12MaxDiff(disp12MaxDiff)
|
|
stereo.setMinDisparity(minDisparity)
|
|
|
|
# Calculating disparity using the StereoBM algorithm
|
|
disparity = stereo.compute(Left_nice,Right_nice)
|
|
# NOTE: compute returns a 16bit signed single channel image,
|
|
# CV_16S containing a disparity map scaled by 16. Hence it
|
|
# is essential to convert it to CV_32F and scale it down 16 times.
|
|
|
|
# Converting to float32
|
|
disparity = disparity.astype(np.float32)
|
|
|
|
# Scaling down the disparity values and normalizing them
|
|
disparity = (disparity/16.0 - minDisparity)/numDisparities
|
|
|
|
# Displaying the disparity map
|
|
cv2.imshow("disp",disparity)
|
|
|
|
# Close window using esc key
|
|
if cv2.waitKey(1) == 27:
|
|
break
|
|
|
|
else:
|
|
CamL= cv2.VideoCapture(CamL_id)
|
|
CamR= cv2.VideoCapture(CamR_id)
|
|
|
|
print("Saving depth estimation paraeters ......")
|
|
|
|
cv_file = cv2.FileStorage("../data/depth_estmation_params_py.xml", cv2.FILE_STORAGE_WRITE)
|
|
cv_file.write("numDisparities",numDisparities)
|
|
cv_file.write("blockSize",blockSize)
|
|
cv_file.write("preFilterType",preFilterType)
|
|
cv_file.write("preFilterSize",preFilterSize)
|
|
cv_file.write("preFilterCap",preFilterCap)
|
|
cv_file.write("textureThreshold",textureThreshold)
|
|
cv_file.write("uniquenessRatio",uniquenessRatio)
|
|
cv_file.write("speckleRange",speckleRange)
|
|
cv_file.write("speckleWindowSize",speckleWindowSize)
|
|
cv_file.write("disp12MaxDiff",disp12MaxDiff)
|
|
cv_file.write("minDisparity",minDisparity)
|
|
cv_file.write("M",39.075)
|
|
cv_file.release()
|
|
|