160 lines
4.2 KiB
Matlab
160 lines
4.2 KiB
Matlab
function path = buildRRT(L1, L2, pt1, pt2)
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% function path = buildRRT(L1, L2, start, finish)
|
|
% Task: Determine the 3D transformation matrix corresponding to a set of Denavit-Hartenberg parameters
|
|
%
|
|
% Inputs:
|
|
% - L1: first length
|
|
% - L2: second length
|
|
% - x1: start point x
|
|
% - y1: first point y
|
|
% - x2: end point x
|
|
% - y2: end point y
|
|
%
|
|
% Output:
|
|
% -path: Vector of points
|
|
%
|
|
% author: Marais Lucas
|
|
% date: 22/11/2023
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
x3 = [-L2 -L2 L2 L2];
|
|
y3 = [-L2 L2 L2 -L2];
|
|
x1 = [-L1-L2 -L1-L2 L1+L2 L1+L2];
|
|
y1 = [-L1-L2 L1+L2 L1+L2 -L1-L2];
|
|
x2 = [-L1-L2 -L1-L2 L1+L2 L1+L2];
|
|
y2 = [-L1 L1 L1 -L1];
|
|
xy_valid = []
|
|
xy_valid(end+1,:) = pt1
|
|
q1q2_valid = [];
|
|
validLinks = [];
|
|
|
|
distanceBetweenPoints = 0.1;
|
|
|
|
fill(x1, y1, 'r');
|
|
|
|
hold on;
|
|
|
|
done = 1;
|
|
if ~(IsIntersecting (L1, L2, pt1, pt2))
|
|
xy_valid(end+1,:) = pt2;
|
|
validLinks(end+1,:) = [1 2];
|
|
done = 0
|
|
endif
|
|
|
|
t = linspace(0, 2*pi, 100)';
|
|
r=L1+L2;
|
|
circsx = r.*cos(t) + 0;
|
|
circsy = r.*sin(t) + 0;
|
|
hold on;
|
|
fill(x2, y2, 'w');
|
|
hold on;
|
|
plot(circsx, circsy, 'b');
|
|
|
|
hold on;
|
|
fill(x3, y3, 'r');
|
|
hold on;
|
|
|
|
axis equal;
|
|
|
|
while(done == 1)
|
|
% samples randomly the joint space
|
|
q1 = rand()*360.0;
|
|
q2 = rand()*360.0;
|
|
|
|
% creates the DH table
|
|
theta = [q1; q2];
|
|
d = [0; 0];
|
|
a = [L1; L2];
|
|
alpha = [0; 0];
|
|
|
|
% computes the FK
|
|
wTee = dh2ForwardKinematics(theta, d, a, alpha, 1);
|
|
|
|
% determines the position of the end-effector
|
|
position_ee = wTee(1:2,end);
|
|
%determine the closest point
|
|
min = 12345678901234567890;
|
|
closestPoint = [];
|
|
closestPointIdx = 0;
|
|
for i=1:size(xy_valid,1)
|
|
dist = (position_ee(1)-xy_valid(i,1))^2+ (position_ee(2)-xy_valid(i,2))^2;
|
|
if (dist < min)
|
|
min = dist;
|
|
closestPoint = xy_valid(i, :);
|
|
closestPointIdx = i;
|
|
endif
|
|
endfor
|
|
min = 12345678901234567890;
|
|
|
|
%place the point at a given length
|
|
vectorForce = [position_ee(1)-closestPoint(1,1) position_ee(2)-closestPoint(1,2)];
|
|
% Calculate the Euclidean norm (length) of the vector
|
|
vectorNorm = norm(vectorForce);
|
|
% Normalize the vector
|
|
vectorForce = vectorForce / vectorNorm;
|
|
newPoint = closestPoint+vectorForce*distanceBetweenPoints;
|
|
|
|
plot(newPoint(1), newPoint(2), 'b');
|
|
% checks if the end-effector is not hitting any obstacle
|
|
eeHittingObstacle = 0;
|
|
if (newPoint(2) >= L1)
|
|
eeHittingObstacle = 1;
|
|
end
|
|
if (newPoint(2) <= -L1)
|
|
eeHittingObstacle = 1;
|
|
end
|
|
if (newPoint(1) >= -L2 && newPoint(1) <= L2 && newPoint(2) >= -L2 && newPoint(2) <= L2)
|
|
eeHittingObstacle = 1;
|
|
end
|
|
|
|
% If the there is something wrong don't do
|
|
if ~(IsIntersecting (L1, L2, closestPoint, newPoint) || eeHittingObstacle == 1)
|
|
validLinks(end+1,:) = [closestPointIdx length(xy_valid)+1];
|
|
xy_valid(end+1,:) = newPoint;
|
|
q1q2_valid(end+1,:) = theta;
|
|
endif
|
|
%no more obstacles
|
|
if ~(IsIntersecting (L1, L2, newPoint, pt2) || eeHittingObstacle == 1)
|
|
done = 0
|
|
xy_valid(end+1,:) = pt2;
|
|
validLinks(end+1,:) = [closestPointIdx length(xy_valid)];
|
|
endif
|
|
|
|
end
|
|
|
|
visibilityGraph = zeros(length(xy_valid));
|
|
|
|
% Add edges to visibility graph based on valid links
|
|
for i = 1:length(xy_valid)
|
|
for j = i+1:length(xy_valid)
|
|
if ~IsIntersecting(L1, L2, xy_valid(i, :), xy_valid(j, :))
|
|
% If the line segment between points i and j does not intersect with obstacles
|
|
visibilityGraph(i, j) = norm(xy_valid(i, :) - xy_valid(j, :));
|
|
visibilityGraph(j, i) = visibilityGraph(i, j); % Assuming undirected graph
|
|
else
|
|
visibilityGraph(i, j) = NaN;% No links
|
|
visibilityGraph(j, i) = visibilityGraph(i, j); % Assuming undirected graph
|
|
end
|
|
end
|
|
end
|
|
|
|
[distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(length(xy_valid)-2, visibilityGraph);
|
|
nodeTrajectory = [1 nodeTrajectory];
|
|
nodeTrajectory(end) = length(xy_valid)
|
|
for i=1:length(nodeTrajectory)-1
|
|
x = [xy_valid(nodeTrajectory(i),1) xy_valid(nodeTrajectory(i+1),1)]
|
|
y = [xy_valid(nodeTrajectory(i),2) xy_valid(nodeTrajectory(i+1),2)]
|
|
plot(x, y)
|
|
endfor
|
|
|
|
path = nodeTrajectory;
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|