TD5_RRT/buildRRT.m

160 lines
4.2 KiB
Matlab

function path = buildRRT(L1, L2, pt1, pt2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function path = buildRRT(L1, L2, start, finish)
% Task: Determine the 3D transformation matrix corresponding to a set of Denavit-Hartenberg parameters
%
% Inputs:
% - L1: first length
% - L2: second length
% - x1: start point x
% - y1: first point y
% - x2: end point x
% - y2: end point y
%
% Output:
% -path: Vector of points
%
% author: Marais Lucas
% date: 22/11/2023
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x3 = [-L2 -L2 L2 L2];
y3 = [-L2 L2 L2 -L2];
x1 = [-L1-L2 -L1-L2 L1+L2 L1+L2];
y1 = [-L1-L2 L1+L2 L1+L2 -L1-L2];
x2 = [-L1-L2 -L1-L2 L1+L2 L1+L2];
y2 = [-L1 L1 L1 -L1];
xy_valid = []
xy_valid(end+1,:) = pt1
q1q2_valid = [];
validLinks = [];
distanceBetweenPoints = 0.1;
fill(x1, y1, 'r');
hold on;
done = 1;
if ~(IsIntersecting (L1, L2, pt1, pt2))
xy_valid(end+1,:) = pt2;
validLinks(end+1,:) = [1 2];
done = 0
endif
t = linspace(0, 2*pi, 100)';
r=L1+L2;
circsx = r.*cos(t) + 0;
circsy = r.*sin(t) + 0;
hold on;
fill(x2, y2, 'w');
hold on;
plot(circsx, circsy, 'b');
hold on;
fill(x3, y3, 'r');
hold on;
axis equal;
while(done == 1)
% samples randomly the joint space
q1 = rand()*360.0;
q2 = rand()*360.0;
% creates the DH table
theta = [q1; q2];
d = [0; 0];
a = [L1; L2];
alpha = [0; 0];
% computes the FK
wTee = dh2ForwardKinematics(theta, d, a, alpha, 1);
% determines the position of the end-effector
position_ee = wTee(1:2,end);
%determine the closest point
min = 12345678901234567890;
closestPoint = [];
closestPointIdx = 0;
for i=1:size(xy_valid,1)
dist = (position_ee(1)-xy_valid(i,1))^2+ (position_ee(2)-xy_valid(i,2))^2;
if (dist < min)
min = dist;
closestPoint = xy_valid(i, :);
closestPointIdx = i;
endif
endfor
min = 12345678901234567890;
%place the point at a given length
vectorForce = [position_ee(1)-closestPoint(1,1) position_ee(2)-closestPoint(1,2)];
% Calculate the Euclidean norm (length) of the vector
vectorNorm = norm(vectorForce);
% Normalize the vector
vectorForce = vectorForce / vectorNorm;
newPoint = closestPoint+vectorForce*distanceBetweenPoints;
plot(newPoint(1), newPoint(2), 'b');
% checks if the end-effector is not hitting any obstacle
eeHittingObstacle = 0;
if (newPoint(2) >= L1)
eeHittingObstacle = 1;
end
if (newPoint(2) <= -L1)
eeHittingObstacle = 1;
end
if (newPoint(1) >= -L2 && newPoint(1) <= L2 && newPoint(2) >= -L2 && newPoint(2) <= L2)
eeHittingObstacle = 1;
end
% If the there is something wrong don't do
if ~(IsIntersecting (L1, L2, closestPoint, newPoint) || eeHittingObstacle == 1)
validLinks(end+1,:) = [closestPointIdx length(xy_valid)+1];
xy_valid(end+1,:) = newPoint;
q1q2_valid(end+1,:) = theta;
endif
%no more obstacles
if ~(IsIntersecting (L1, L2, newPoint, pt2) || eeHittingObstacle == 1)
done = 0
xy_valid(end+1,:) = pt2;
validLinks(end+1,:) = [closestPointIdx length(xy_valid)];
endif
end
visibilityGraph = zeros(length(xy_valid));
% Add edges to visibility graph based on valid links
for i = 1:length(xy_valid)
for j = i+1:length(xy_valid)
if ~IsIntersecting(L1, L2, xy_valid(i, :), xy_valid(j, :))
% If the line segment between points i and j does not intersect with obstacles
visibilityGraph(i, j) = norm(xy_valid(i, :) - xy_valid(j, :));
visibilityGraph(j, i) = visibilityGraph(i, j); % Assuming undirected graph
else
visibilityGraph(i, j) = NaN;% No links
visibilityGraph(j, i) = visibilityGraph(i, j); % Assuming undirected graph
end
end
end
[distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(length(xy_valid)-2, visibilityGraph);
nodeTrajectory = [1 nodeTrajectory];
nodeTrajectory(end) = length(xy_valid)
for i=1:length(nodeTrajectory)-1
x = [xy_valid(nodeTrajectory(i),1) xy_valid(nodeTrajectory(i+1),1)]
y = [xy_valid(nodeTrajectory(i),2) xy_valid(nodeTrajectory(i+1),2)]
plot(x, y)
endfor
path = nodeTrajectory;
end