#include "iostream" #include "opencv2/opencv.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" int FPS = 15; int DISCARD_DURATION = 1; int BUFFER_DURATION = 1; template cv::Mat plotGraph(std::vector& vals, int YRange[2]) { auto it = minmax_element(vals.begin(), vals.end()); float scale = 1./ceil(*it.second - *it.first); float bias = *it.first; int rows = YRange[1] - YRange[0] + 1; cv::Mat image = 255*cv::Mat::ones( rows, vals.size(), CV_8UC3 ); image.setTo(255); for (int i = 0; i < (int)vals.size()-1; i++) { cv::line(image, cv::Point(i, rows - 1 - (vals[i] - bias)*scale*YRange[1]), cv::Point(i+1, rows - 1 - (vals[i+1] - bias)*scale*YRange[1]), cv::Scalar(255, 0, 0), 1); } return image; } int main() { //-- Face detection cv::CascadeClassifier faceDetector; if( !faceDetector.load("./haarcascade_frontalface_alt.xml")) { std::cerr << "[ERROR] Unable to load face cascade" << std::endl; return -1; } cv::VideoCapture cap; cap.open(0); if (!cap.isOpened()) { std::cerr << "[ERROR] Unable to open camera!" << std::endl; return -2; } bool isDiscardData = true; int countDiscard = 0; while (true) { // create a matrix to store the image from the cam cv::Mat frame; // wait for a new frame from camera and store it into 'frame' cap.read(frame); // check if we succeeded if (frame.empty()) { std::cerr << "[ERROR] blank frame grabbed" << std::endl; break; } if (isDiscardData) { std::cout <<"Discarding" < faceRectangles; faceDetector.detectMultiScale(frame_gray, faceRectangles, 1.1, 3, 0, cv::Size(20, 20)); cv::Rect foreheadROI; if (faceRectangles.size()>0) foreheadROI = faceRectangles[0]; foreheadROI.height *= 0.3; cv::rectangle(frame, foreheadROI, cv::Scalar(0, 0, 255), 1, 1, 0); cv::Mat frame_forehead = frame(foreheadROI); cv::Scalar avg_forehead = mean(frame_forehead); bool isBufferFull = false; int sampleIdBuffer = 0; cv::Mat greenSignal(1, FPS*BUFFER_DURATION, CV_64F); if (!isBufferFull) { greenSignal.at(0, sampleIdBuffer) = avg_forehead[1] ; sampleIdBuffer++; if (sampleIdBuffer == FPS*BUFFER_DURATION) { isBufferFull = true; } } std::vector greenSignalNormalized; cv::Scalar mean, stddev; cv::meanStdDev(greenSignal, mean, stddev); for (int l_sample=0; l_sample < FPS*BUFFER_DURATION; l_sample++) { greenSignalNormalized.push_back((greenSignal.at(0, l_sample) - mean[0])/stddev[0]); } int range[2] = {0, (int)(FPS*BUFFER_DURATION)}; cv::imshow("green", plotGraph(greenSignalNormalized, range)); } cv::imshow("Color", frame); if (cv::waitKey(1000.0/FPS) >= 0) break; } return 0; }