Compare commits

...

2 Commits

Author SHA1 Message Date
Ly PECHVATTANA 81618e47f7 Class finished 2023-03-21 23:31:55 +07:00
Ly PECHVATTANA ab83082f73 load the signal package 2023-03-21 19:56:56 +07:00
13 changed files with 311 additions and 1 deletions

57
code/chanvocoder.m Normal file
View File

@ -0,0 +1,57 @@
function y = chanvocoder(carrier, modul, chan, numband, overlap)
% y = chanvocoder(carrier, modul, chan, numband, overlap)
% The Channel Vocoder modulates the carrier signal with the modulation signal
% chan = number of channels (e.g., 512)
% numband = number of bands (<chan) (e.g., 32)
% overlap = window overlap (e.g., 1/4)
if numband>chan
error('# bands must be < # channels')
end
[rc, cc] = size(carrier);
if cc>rc
carrier = carrier';
end
[rm, cm] = size(modul);
if cm>rm
modul = modul';
end
st = min(rc,cc); % stereo or mono?
if st~= min(rm,cm)
error('carrier and modulator must have same number of tracks');
end
len = min(length(carrier),length(modul)); % find shortest length
carrier = carrier(1:len,1:st); % shorten carrier if needed
modul = modul(1:len,1:st); % shorten modulator if needed
L = 2*chan; % window length/FFT length
w = hanning(L);
if st==2
w=[w w];
end % window/ stereo window
bands = 1:round(chan/numband):chan; % indices for frequency bands
bands(end) = chan;
y = zeros(len,st); % output vector
ii = 0;
while ii*L*overlap+L <= len
ind = round([1+ii*L*overlap:ii*L*overlap+L]);
FFTmod = fft( modul(ind,:) .* w ); % window & take FFT of modulator
FFTcar = fft( carrier(ind,:) .* w ); % window & take FFT of carrier
syn = zeros(chan,st); % place for synthesized output
for jj = 1:numband-1 % for each frequency band
b = [bands(jj):bands(jj+1)-1]; % current band
syn(b,:) = FFTcar(b,:)*diag(mean(abs(FFTmod(b,:))));
end % take product of spectra
midval = FFTmod(1+L/2,:).*FFTcar(1+L/2,:); % midpoint is special
synfull = [syn; midval; flipud( conj( syn(2:end,:) ) );]; % + and - frequencies
timsig = real( ifft(synfull) ); % invert back to time
y(ind,:) = y(ind,:) + timsig; % add back into time waveform
ii = ii+1;
end
y = 0.8*y/max(max(abs(y))); % normalize output

62
code/frequencySpectrum.m Normal file
View File

@ -0,0 +1,62 @@
function [power, duration] = frequencySpectrum(signal, fs, pad)
%%%%%%%%%%%%%%%%%%
%function power = frequencySpectrum(signal, fs, pad)
%
% Task: Display the power spectrum (lin and log scale) of a given signal
%
% Input:
% - signal: the input signal to process
% - fs: the sampling rate
% -pad: boolean if true, signal is padded with 0 to the next power of 2 -> FFT instead of DFT
%
% Output:
% - power: the power spectrum
%
%
% Guillaume Gibert, guillaume.gibert@ecam.fr
% 25/04/2022
%%%%%%%%%%%%%%%%%%
n = length(signal); % number of samples
if (pad)
n = 2^nextpow2(n);
end
tic
y = fft(signal, n);% compute DFT of input signal
duration = toc;
power = abs(y).^2/n; % power of the DFT
[val, ind] = max(power); % find the mx value of DFT and its index
% plots
figure;
subplot(1,3,1) % time plot
t=0:1/fs:(n-1)/fs; % time range
%pad signal with zeros
if (pad)
signal = [ signal; zeros( n-length(signal), 1)];
end
plot(t, signal)
xticks(0:0.1*fs:n*fs);
xticklabels(0:0.1:n/fs);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
subplot(1,3,2) % linear frequency plot
f = (0:n-1)*(fs/n); % frequency range
plot(f,power, 'b*'); hold on;
plot(f,power, 'r');
xlabel('Frequency (Hz)')
ylabel('Power (a.u.)')
subplot(1,3,3) % log frequency plot
plot(f,10*log10(power/power(ind)));
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
fig =gcf;
set(fig, 'Visiblr', 'off');

38
code/spectrogram.m Normal file
View File

@ -0,0 +1,38 @@
function spectrogram(signal, samplingFreq, step_size, window_size)
%%%%%%%%%%%%%%%%%%%%%%%
%function spectrogram(signal, samplingFreq, step_size, window_size)
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
%
% Task: Plot the spectrogram of a given signal
%
% Inputs:
% -signal: temporal signal to analyse
% -samplingFreq: sampling frequency of the temporal signal
% -step_size: how often the power spectrum will be computed in ms
% -window_size: size of the analysing window in ms
%
% Ouput: None
%
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
% date: 14/03/2023
%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(2,1,1);
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
plot(t, signal');
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
ylabel('amplitude (norm. unit)');
subplot(2,1,2);
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
window = fix(window_size*samplingFreq/1000); % window_size ms data window
fftn = 2^nextpow2(window); % next highest power of 2
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
S = max(S, 10^(-40/10)); % clip below -40 dB.
S = min(S, 10^(-3/10)); % clip above -3 dB.
imagesc (t, f, log(S)); % display in log scale
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
xlabel('time (s)');
ylabel('frequency (Hz)');

63
frequencySpectrum.m Normal file
View File

@ -0,0 +1,63 @@
function [power, duration] = frequencySpectrum(signal, fs, pad)
%%%%%%%%%%%%%%%%%%
%function power = frequencySpectrum(signal, fs, pad)
%
% Task: Display the power spectrum (lin and log scale) of a given signal
%
% Input:
% - signal: the input signal to process
% - fs: the sampling rate
% -pad: boolean if true, signal is padded with 0 to the next power of 2 -> FFT instead of DFT
%
% Output:
% - power: the power spectrum
%
%
% Guillaume Gibert, guillaume.gibert@ecam.fr
% 25/04/2022
%%%%%%%%%%%%%%%%%%
n = length(signal); % number of samples
if (pad)
n = 2^nextpow2(n);
end
tic
y = fft(signal, n);% compute DFT of input signal
duration = toc;
power = abs(y).^2/n; % power of the DFT
[val, ind] = max(power); % find the mx value of DFT and its index
if (1)
% plots
figure;
subplot(1,3,1) % time plot
t=0:1/fs:(n-1)/fs; % time range
%pad signal with zeros
if (pad)
signal = [ signal; zeros( n-length(signal), 1)];
end
plot(t, signal)
xticks(0:0.1*fs:n*fs);
xticklabels(0:0.1:n/fs);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
subplot(1,3,2) % linear frequency plot
f = (0:n-1)*(fs/n); % frequency range
plot(f,power, 'b*'); hold on;
plot(f,power, 'r');
xlabel('Frequency (Hz)')
ylabel('Power (a.u.)')
subplot(1,3,3) % log frequency plot
plot(f,10*log10(power/power(ind)));
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
end

BIN
modulator22.wav Normal file

Binary file not shown.

BIN
octave-workspace Normal file

Binary file not shown.

BIN
sound/carrier22.wav Normal file

Binary file not shown.

BIN
sound/modulator22.wav Normal file

Binary file not shown.

BIN
sound/white.wav Normal file

Binary file not shown.

BIN
sound/white_periodic.wav Normal file

Binary file not shown.

38
spectrogram.m Normal file
View File

@ -0,0 +1,38 @@
function spectrogram(signal, samplingFreq, step_size, window_size)
%%%%%%%%%%%%%%%%%%%%%%%
%function spectrogram(signal, samplingFreq, step_size, window_size)
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
%
% Task: Plot the spectrogram of a given signal
%
% Inputs:
% -signal: temporal signal to analyse
% -samplingFreq: sampling frequency of the temporal signal
% -step_size: how often the power spectrum will be computed in ms
% -window_size: size of the analysing window in ms
%
% Ouput: None
%
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
% date: 14/03/2023
%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(2,1,1);
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
plot(t, signal');
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
ylabel('amplitude (norm. unit)');
subplot(2,1,2);
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
window = fix(window_size*samplingFreq/1000); % window_size ms data window
fftn = 2^nextpow2(window); % next highest power of 2
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
S = max(S, 10^(-40/10)); % clip below -40 dB.
S = min(S, 10^(-3/10)); % clip above -3 dB.
imagesc (t, f, log(S)); % display in log scale
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
xlabel('time (s)');
ylabel('frequency (Hz)');

View File

@ -1 +0,0 @@
int test = 1;

53
speech_analysis.m Normal file
View File

@ -0,0 +1,53 @@
pkg load signal
%load & plot audio file modulator
%modulator = fullfile('sound', 'modulator22.wav');
[audio_data sampling_freq]= audioread('modulator22.wav');
figure;
plot(audio_data);
xlabel('Time (s)');
ylabel('Amplitude');
title('Modulator22');
%spectral anlysis
if (1)
t = 5;
%average
for i=1:t
%FFT
[power, duration]=frequencySpectrum(audio_data,sampling_freq,1);
duration_fft(i) = duration;
%DFT
[power, duration]=frequencySpectrum(audio_data,sampling_freq,0);
duration_dft(i) = duration;
sum_fft =0;
sum_dft =0;
sum_fft = sum_fft + duration_fft(i);
sum_dft = sum_fft + duration_dft(i);
endfor
%estimate the duration of FFT
average_fft = sum_fft/t
average_dft = sum_dft/t
end
%Compute and display spectrogram
if(0)
spectrogram(audio_data,sampling_freq,5,5);
%spectrogram(audio_data,sampling_freq,30,5);
wan = audio_data(0.37*sampling_freq:1.17*sampling_freq);
tu = audio_data(1.24*sampling_freq:1.75*sampling_freq);
tri = audio_data(1.84*sampling_freq:2.19*sampling_freq);
frequencySpectrum(wan,sampling_freq,1);
frequencySpectrum(tu,sampling_freq,1);
frequencySpectrum(tri,sampling_freq,1);
end