submission

This commit is contained in:
Ly PECHVATTANA 2023-04-20 21:17:14 +07:00
parent 5d15336758
commit 893829e257
3 changed files with 99 additions and 0 deletions

32
frequencySpectrum.m Normal file
View File

@ -0,0 +1,32 @@
function power = frequencySpectrum(signal, fs)
n = length(signal); % number of samples
y = fft(signal, n);% compute DFT of input signal
power = abs(y).^2/n; % power of the DFT
[val, ind] = max(power); % find the mx value of DFT and its index
% plots
figure;
subplot(1,3,1) % time plot
t=0:1/fs:(n-1)/fs; % time range
plot(t, signal)
xticks(0:0.1*fs:n*fs);
xticklabels(0:0.1:n/fs);
xlabel('Time (s)');
ylabel('Amplitude (a.u.)');
subplot(1,3,2) % linear frequency plot
f = (0:n-1)*(fs/n); % frequency range
plot(f,power, 'b*'); hold on;
plot(f,power, 'r');
xlabel('Frequency (Hz)')
ylabel('Power (a.u.)')
subplot(1,3,3) % log frequency plot
plot(f,10*log10(power/power(ind)));
xlabel('Frequency (Hz)')
ylabel('Power (dB)')

29
main.m
View File

@ -10,9 +10,38 @@ pkg load signal
%load data
signal = csvread('unknownsignal.csv');
%input data
fs = 1000; %Sampling freq (Hz)
fc = 100; %Cut-off Freq (Hz)
n = 4; % Filter order
samplingDuration = length(signal);
window_size = samplingDuration/2;
%plotting signal in time domain
figure;
plot(signal);
xlabel('Time in [s]');
ylabel('Amplitude');
title('Signal data in time domain');
%frequency Spectrum
frequencySpectrum(signal,samplingFreq);
%spectrogram
%spectrogram(signal, samplingFreq, 30, 5)
%low pass filter
[b, a] = butter(n, fc/(fs/2), 'low');
signal_filtered = filter(b, a, signal);
t = 0 : length(signal) - 1;
subplot(2,1,1);
plot(t, signal);
title('Original Signal');
xlabel('Time (samples)');
ylabel('Amplitude');
subplot(2,1,2);
plot(t, signal_filtered);
title('Low-pass Filtered Signal');
xlabel('Time (samples)');
ylabel('Amplitude');

38
spectrogram.m Normal file
View File

@ -0,0 +1,38 @@
function spectrogram(signal, samplingFreq, step_size, window_size)
%%%%%%%%%%%%%%%%%%%%%%%
%function spectrogram(signal, samplingFreq, step_size, window_size)
% ex.: spectrogram(signal, samplingFreq, step_size, window_size)
%
% Task: Plot the spectrogram of a given signal
%
% Inputs:
% -signal: temporal signal to analyse
% -samplingFreq: sampling frequency of the temporal signal
% -step_size: how often the power spectrum will be computed in ms
% -window_size: size of the analysing window in ms
%
% Ouput: None
%
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
% date: 14/03/2023
%%%%%%%%%%%%%%%%%%%%%%%
figure;
subplot(2,1,1);
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
plot(t, signal');
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
ylabel('amplitude (norm. unit)');
subplot(2,1,2);
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
window = fix(window_size*samplingFreq/1000); % window_size ms data window
fftn = 2^nextpow2(window); % next highest power of 2
[S, f, t] = specgram(signal, fftn, samplingFreq, window, window-step);
S = abs(S(2:fftn*4000/samplingFreq,:)); % magnitude in range 0<f<=4000 Hz.
S = S/max(S(:)); % normalize magnitude so that max is 0 dB.
S = max(S, 10^(-40/10)); % clip below -40 dB.
S = min(S, 10^(-3/10)); % clip above -3 dB.
imagesc (t, f, log(S)); % display in log scale
set (gca, "ydir", "normal"); % put the 'y' direction in the correct direction
xlabel('time (s)');
ylabel('frequency (Hz)');