Merge branch 'master' of https://gitarero.ecam.fr/mathys.balme/OOP_1B6_Project.git
This commit is contained in:
commit
81460ad594
|
|
@ -7,8 +7,8 @@ public class Board {
|
|||
private int selectedX = -1; // negative value means impossible x and y so unselected
|
||||
private int selectedY = -1;
|
||||
|
||||
private int turnNumber = 0; // track current turn
|
||||
private int width;
|
||||
private int turnNumber = 0; // tracks current turn
|
||||
private int width; // enables to define the dimensions of board
|
||||
private int height;
|
||||
private Piece[][] board; // 2D array chess board
|
||||
private ArrayList<int[]> highlightedPositions = new ArrayList<>(); // list of valid positions to highlight
|
||||
|
|
@ -16,7 +16,7 @@ public class Board {
|
|||
public Board(int colNum, int lineNum) {
|
||||
this.width = colNum;
|
||||
this.height = lineNum;
|
||||
this.board = new Piece[width][height]; // first empty board
|
||||
this.board = new Piece[width][height]; // first empty board *********REVIEW************
|
||||
clearConsole();
|
||||
System.out.println(toString()); // print the chess at the beginning of the game
|
||||
}
|
||||
|
|
@ -29,28 +29,28 @@ public class Board {
|
|||
return height;
|
||||
}
|
||||
|
||||
// new piece on the board at x,y
|
||||
// new piece on the board at x,y (More specifically changes the empty cell of coordinates x,y with a new chess piece)
|
||||
public void setPiece(boolean isWhite, PieceType type, int x, int y) {
|
||||
board[x][y] = new Piece(x, y, type, isWhite);
|
||||
}
|
||||
|
||||
public boolean isTurnWhite() {
|
||||
if (turnNumber % 2 == 0) { // even turns including 0 are white's ones
|
||||
if (turnNumber % 2 == 0) { // even turns including 0 are white's ones (% calculates the reminder of the euclidean division)
|
||||
return true;
|
||||
} else { // same reasoning, odd turns are black's ones
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
public int getTurnNumber() { // these classes change the turn and the increment one solves a problem of infinite loop
|
||||
return turnNumber;
|
||||
public int getTurnNumber() { // this class enables to obtain the current turn number while increment adds 1 to this value for each turn
|
||||
return turnNumber; // Necessarly in two functions to get rid of an infinite loop ****WHY****
|
||||
}
|
||||
|
||||
public void incrementTurn() {
|
||||
turnNumber++;
|
||||
}
|
||||
|
||||
// set up the chess board taking it as a matrix
|
||||
// set up the classic chess board taking it as a matrix and putting each corresponding starting piece at its place 0,0 is the top left spot of the board
|
||||
public void populateBoard() {
|
||||
// Black
|
||||
setPiece(false, PieceType.Rook, 0, 0);
|
||||
|
|
@ -90,8 +90,12 @@ public class Board {
|
|||
}
|
||||
}
|
||||
}
|
||||
public Piece getPiece(int x, int y) {
|
||||
if (!isInBounds (x, y)) return null;
|
||||
return board [x][y];
|
||||
}
|
||||
|
||||
private void clearConsole() {
|
||||
private void clearConsole() { // ***************CONSOLE
|
||||
for (int i = 0; i < 50; i++) {
|
||||
System.out.println(); // Print 50 empty lines to "clear" the console
|
||||
}
|
||||
|
|
@ -157,7 +161,7 @@ public class Board {
|
|||
|
||||
// user clicks on the board
|
||||
public void userTouch(int x, int y) {
|
||||
if (selectedX == -1 && selectedY == -1) {
|
||||
if (selectedX == -1 && selectedY == -1) { // This condition is only possible at the very start of the game
|
||||
// check if the position is empty and the color
|
||||
if (board[x][y] != null && board[x][y].isWhite() == isTurnWhite()) {
|
||||
// select it as active location
|
||||
|
|
@ -167,7 +171,7 @@ public class Board {
|
|||
}
|
||||
} else {
|
||||
if (x == selectedX && y == selectedY) {
|
||||
// unselect it
|
||||
// unselect it if the destination is unvalid (not highlighted)
|
||||
selectedX = -1;
|
||||
selectedY = -1;
|
||||
highlightedPositions.clear();
|
||||
|
|
@ -212,112 +216,12 @@ public class Board {
|
|||
}
|
||||
|
||||
/* utility methods */
|
||||
private boolean isInBounds(int x, int y) {
|
||||
public boolean isInBounds(int x, int y) {
|
||||
return x >= 0 && x < width && y >= 0 && y < height;
|
||||
}
|
||||
|
||||
private void addLinearMoves(ArrayList<int[]> moves, int x, int y, Piece piece, int dx, int dy) {
|
||||
int nx = x + dx;
|
||||
int ny = y + dy;
|
||||
while (isInBounds(nx, ny)) {
|
||||
if (board[nx][ny] == null) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
} else {
|
||||
if (board[nx][ny].isWhite() != piece.isWhite()) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
}
|
||||
break;
|
||||
}
|
||||
nx += dx;
|
||||
ny += dy;
|
||||
}
|
||||
}
|
||||
|
||||
private ArrayList<int[]> getValidMoves(Piece piece) {
|
||||
ArrayList<int[]> moves = new ArrayList<>();
|
||||
int x = piece.getX();
|
||||
int y = piece.getY();
|
||||
|
||||
switch (piece.getType()) {
|
||||
case Pawn:
|
||||
int direction = piece.isWhite() ? -1 : 1;
|
||||
int nextY = y + direction;
|
||||
|
||||
// forward move
|
||||
if (isInBounds(x, nextY) && board[x][nextY] == null) {
|
||||
moves.add(new int[]{x, nextY});
|
||||
|
||||
// double move from starting position
|
||||
int startRow = piece.isWhite() ? 6 : 1;
|
||||
int doubleStepY = y + 2 * direction;
|
||||
if (y == startRow && isInBounds(x, doubleStepY) && board[x][doubleStepY] == null) {
|
||||
moves.add(new int[]{x, doubleStepY});
|
||||
}
|
||||
}
|
||||
|
||||
// diagonal captures
|
||||
for (int dx = -1; dx <= 1; dx += 2) {
|
||||
int nx = x + dx;
|
||||
if (isInBounds(nx, nextY) && board[nx][nextY] != null && board[nx][nextY].isWhite() != piece.isWhite()) {
|
||||
moves.add(new int[]{nx, nextY});
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case Rook:
|
||||
addLinearMoves(moves, x, y, piece, 1, 0);
|
||||
addLinearMoves(moves, x, y, piece, -1, 0);
|
||||
addLinearMoves(moves, x, y, piece, 0, 1);
|
||||
addLinearMoves(moves, x, y, piece, 0, -1);
|
||||
break;
|
||||
|
||||
case Bishop:
|
||||
addLinearMoves(moves, x, y, piece, 1, 1);
|
||||
addLinearMoves(moves, x, y, piece, -1, 1);
|
||||
addLinearMoves(moves, x, y, piece, 1, -1);
|
||||
addLinearMoves(moves, x, y, piece, -1, -1);
|
||||
break;
|
||||
|
||||
case Queen:
|
||||
for (int dx = -1; dx <= 1; dx++) {
|
||||
for (int dy = -1; dy <= 1; dy++) {
|
||||
if (dx != 0 || dy != 0) {
|
||||
addLinearMoves(moves, x, y, piece, dx, dy);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case King:
|
||||
for (int dx = -1; dx <= 1; dx++) {
|
||||
for (int dy = -1; dy <= 1; dy++) {
|
||||
if (dx != 0 || dy != 0) {
|
||||
int nx = x + dx;
|
||||
int ny = y + dy;
|
||||
if (isInBounds(nx, ny) && (board[nx][ny] == null || board[nx][ny].isWhite() != piece.isWhite())) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case Knight:
|
||||
int[][] jumps = {
|
||||
{1, 2}, {2, 1}, {-1, 2}, {-2, 1},
|
||||
{-1, -2}, {-2, -1}, {1, -2}, {2, -1}
|
||||
};
|
||||
for (int[] j : jumps) {
|
||||
int nx = x + j[0];
|
||||
int ny = y + j[1];
|
||||
if (isInBounds(nx, ny) && (board[nx][ny] == null || board[nx][ny].isWhite() != piece.isWhite())) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
return moves;
|
||||
return piece.getValidMoves(this);
|
||||
}
|
||||
|
||||
/* saving-loading feature : */
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@ public class Piece {
|
|||
public int getY() {
|
||||
return y;
|
||||
}
|
||||
|
||||
|
||||
public PieceType getType() {
|
||||
return type;
|
||||
|
|
@ -30,5 +31,116 @@ public class Piece {
|
|||
public boolean isWhite() {
|
||||
return pieceColor;
|
||||
}
|
||||
|
||||
public ArrayList<int[]> getValidMoves(Board board) {
|
||||
ArrayList<int[]> moves = new ArrayList<>();
|
||||
int x = this.getX();
|
||||
int y = this.getY();
|
||||
|
||||
switch (type) {
|
||||
case Pawn:
|
||||
int direction = isWhite() ? -1 : 1;
|
||||
int nextY = y + direction;
|
||||
|
||||
// forward move
|
||||
if (board.isInBounds(x, nextY) && board.getPiece(x, nextY) == null) {
|
||||
moves.add(new int[]{x, nextY});
|
||||
|
||||
// double move from starting position
|
||||
int startRow = isWhite() ? 6 : 1;
|
||||
int doubleStepY = y + 2 * direction;
|
||||
if (y == startRow && board.isInBounds(x, doubleStepY) && board.getPiece(x, doubleStepY) == null) {
|
||||
moves.add(new int[]{x, doubleStepY});
|
||||
}
|
||||
}
|
||||
|
||||
// diagonal captures
|
||||
for (int dx = -1; dx <= 1; dx += 2) {
|
||||
int nx = x + dx;
|
||||
if (board.isInBounds(nx, nextY)) {
|
||||
Piece target = board.getPiece(nx, nextY);
|
||||
if (target != null && target.isWhite() != this.isWhite()) {
|
||||
moves.add(new int[]{nx, nextY});
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case Rook:
|
||||
addLinearMoves(board, moves, x, y, 1, 0);
|
||||
addLinearMoves(board, moves, x, y, -1, 0);
|
||||
addLinearMoves(board, moves, x, y, 0, 1);
|
||||
addLinearMoves(board, moves, x, y, 0, -1);
|
||||
break;
|
||||
|
||||
case Bishop:
|
||||
addLinearMoves(board, moves, x, y, 1, 1);
|
||||
addLinearMoves(board, moves, x, y, -1, 1);
|
||||
addLinearMoves(board, moves, x, y, 1, -1);
|
||||
addLinearMoves(board, moves, x, y, -1, -1);
|
||||
break;
|
||||
|
||||
case Queen:
|
||||
for (int dx = -1; dx <= 1; dx++) {
|
||||
for (int dy = -1; dy <= 1; dy++) {
|
||||
if (dx != 0 || dy != 0) {
|
||||
addLinearMoves(board, moves, x, y, dx, dy);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case King:
|
||||
for (int dx = -1; dx <= 1; dx++) {
|
||||
for (int dy = -1; dy <= 1; dy++) {
|
||||
if (dx != 0 || dy != 0) {
|
||||
int nx = x + dx;
|
||||
int ny = y + dy;
|
||||
if (board.isInBounds(nx, ny)) {
|
||||
Piece target = board.getPiece(nx, ny);
|
||||
if (target == null || target.isWhite() != this.isWhite()) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case Knight:
|
||||
int[][] jumps = {
|
||||
{1, 2}, {2, 1}, {-1, 2}, {-2, 1},
|
||||
{-1, -2}, {-2, -1}, {1, -2}, {2, -1}
|
||||
};
|
||||
for (int[] j : jumps) {
|
||||
int nx = x + j[0];
|
||||
int ny = y + j[1];
|
||||
if (board.isInBounds(nx, ny)) {
|
||||
Piece target = board.getPiece(nx, ny);
|
||||
if (target == null || target.isWhite() != this.isWhite()) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
return moves;
|
||||
}
|
||||
private void addLinearMoves(Board board, ArrayList<int[]> moves, int x, int y, int dx, int dy) {
|
||||
int nx = x + dx;
|
||||
int ny = y + dy;
|
||||
while (board.isInBounds(nx, ny)) {
|
||||
Piece target = board.getPiece(nx, ny);
|
||||
if (target == null) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
} else {
|
||||
if (target.isWhite() != this.isWhite()) {
|
||||
moves.add(new int[]{nx, ny});
|
||||
}
|
||||
break;
|
||||
}
|
||||
nx += dx;
|
||||
ny += dy;
|
||||
}
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue