//C++ #include //include those opencv2 files in our program #include "opencv2/opencv.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" int FPS=10; //FPS variable. FPS is the framerate of your video, aka your recording device's int DISCARD_DURATION=5; bool isDiscardData=true; int countDiscard=0; bool isBufferFull = false; //buffer variables to initialise before main(); int sampleIdBuffer = 0; int BUFFER_DURATION= 15; //Display normalised signal template cv::Mat plotGraph(std::vector& vals, int YRange[2]) { auto it = minmax_element(vals.begin(), vals.end()); float scale = 1./ceil(*it.second - *it.first); float bias = *it.first; int rows = YRange[1] - YRange[0] + 1; cv::Mat image = 255*cv::Mat::ones( rows, vals.size(), CV_8UC3 ); image.setTo(255); for (int i = 0; i < (int)vals.size()-1; i++) { cv::line(image, cv::Point(i, rows - 1 - (vals[i] - bias)*scale*YRange[1]), cv::Point(i+1, rows - 1 - (vals[i+1] - bias)*scale*YRange[1]), cv::Scalar(255, 0, 0), 1); } return image; } int main(){ //Print "PPG algorithm" to terminal //Note to self: std::endl; returns to line in terminal; use it everytime when done printing something. std::cout << "PPG algorithm"<< std::endl; cv::VideoCapture cap; cap.open(0); if (!cap.isOpened()) { //Check if we can access the camera std::cerr<<"[ERROR] unable to open camera!"< faceRectangles; faceDetector.detectMultiScale(frame_gray, faceRectangles, 1.1, 3, 0, cv::Size(20,20)); //Detects face if (faceRectangles.size() > 0) cv::rectangle(frame, faceRectangles[0], cv::Scalar(0,0,255),1,1,0); cv::Rect foreheadROI; //create a forehead ROI equal to the face ROI slightly moved upward. if (faceRectangles.size() > 0) { foreheadROI = faceRectangles[0]; foreheadROI.height *= 0.3; cv::Mat frame_forehead = frame(foreheadROI); cv::Scalar avg_forehead = mean(frame_forehead); //calculates mean of object frame_forehead //Buffer of average value for the green channel over the forehead ROI cv::Mat greenSignal(1, FPS*BUFFER_DURATION, CV_64F); if (!isBufferFull) { std::cout << "sampleIdBuffer= " << sampleIdBuffer << " / " << FPS*BUFFER_DURATION << std::endl; greenSignal.at(0, sampleIdBuffer) = avg_forehead[1] ; sampleIdBuffer++; if (sampleIdBuffer == FPS*BUFFER_DURATION) { isBufferFull = true; std::cout<<"greenSignal= "< greenSignalNormalized; cv::Scalar mean, stddev; cv::meanStdDev(greenSignal, mean, stddev); for (int l_sample=0; l_sample < FPS*BUFFER_DURATION; l_sample++) { greenSignalNormalized.push_back((greenSignal.at(0, l_sample)-mean[0])/stddev[0]); } //This is used in the main function to display the signal int range[2] = {0, (int)(FPS*BUFFER_DURATION)}; cv::imshow("green", plotGraph(greenSignalNormalized, range)); cv::Mat greenFFT; //Fast Fourier Transform std::vector greenFFTModule; cv::dft(greenSignalNormalized,greenFFT,cv::DFT_ROWS|cv::DFT_COMPLEX_OUTPUT); cv::Mat planes[] = {cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F), cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F)}; cv::split(greenFFT, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I)) greenFFTModule.clear(); for (int l=0; l < planes[1].cols; l++) { double moduleFFT = pow(planes[1].at(0,l),2) + pow(planes[0].at(0,l),2); greenFFTModule.push_back(sqrt(moduleFFT)); } // display green FFT cv::imshow("FFT module green", plotGraph(greenFFTModule, range)); //Find max Value and index of said value from FFT float maxValue=-1; int indexValue=0; for(auto i=0.5*(BUFFER_DURATION);i<(4*BUFFER_DURATION);i++) { if(greenFFTModule[i]>maxValue) { maxValue=greenFFTModule[i]; indexValue=i; } } //Calculate and print Heart Rate Beat Per Minute float HRBPM=(indexValue*60.0)/(BUFFER_DURATION); std::cout<=0) //Stops after 1000/FPS frames { break; } } }