Merge branch 'develop'
This commit is contained in:
commit
13d2c6a4e3
|
|
@ -0,0 +1,42 @@
|
|||
function signal_win = blackmanWin(signal, signal_duration, sampling_freq, pad)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function signal_win = blackmanWin(signal)
|
||||
%
|
||||
% Inputs:
|
||||
% - signal: signal of interest
|
||||
%
|
||||
% Output:
|
||||
% - signal_win: signal of interest on which a blackman window was applied
|
||||
%
|
||||
% Author: Guillaume Gibert, guillaume.gibert@ecam.fr
|
||||
% Date: 15/03/2024
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% create the temporal array
|
||||
t=-signal_duration/2:1/sampling_freq:(signal_duration/2)-1/sampling_freq;
|
||||
% window duration is half of signal duration
|
||||
windowDuration = signal_duration/2;
|
||||
|
||||
|
||||
blackmanWin = zeros(1, length(t));
|
||||
|
||||
for l_sample=1:length(signal)
|
||||
blackmanWin(l_sample) = (0.42 - 0.5 * cos(2*pi*(l_sample)/length(signal)) + 0/08*cos(4*pi*(l_sample)/length(signal)));
|
||||
end
|
||||
|
||||
% plot Blackman window
|
||||
figure;
|
||||
title("Blackman Window"); hold on;
|
||||
plot(t, blackmanWin);
|
||||
|
||||
% apply the Blackman window
|
||||
for l_sample=1:length(signal)
|
||||
signal_win(l_sample) = signal(l_sample) * blackmanWin(l_sample);
|
||||
end
|
||||
|
||||
figure;
|
||||
title("Original and Windowed signals"); hold on;
|
||||
plot(signal); hold on;
|
||||
plot(signal_win);
|
||||
|
||||
frequencySpectrum(signal_win, sampling_freq/2,pad);
|
||||
|
|
@ -0,0 +1,55 @@
|
|||
function power = frequencySpectrum(signal, fs, pad)
|
||||
%%%%%%%%%%%%%%%%%%
|
||||
%function power = frequencySpectrum(signal, fs, pad)
|
||||
%
|
||||
% Task: Display the power spectrum (lin and log scale) of a given signal
|
||||
%
|
||||
% Input:
|
||||
% - signal: the input signal to process
|
||||
% - fs: the sampling rate
|
||||
% - pad: pad the signal with zeros to the next power of 2
|
||||
%
|
||||
% Output:
|
||||
% - power: the power spectrum
|
||||
%
|
||||
%
|
||||
% Guillaume Gibert, guillaume.gibert@ecam.fr
|
||||
% 25/04/2022
|
||||
%%%%%%%%%%%%%%%%%%
|
||||
|
||||
n = length(signal); % number of samples
|
||||
|
||||
if (pad)
|
||||
n_original = n;
|
||||
n = 2^(nextpow2(n));
|
||||
signal = [signal zeros(1, n-n_original)];
|
||||
end
|
||||
|
||||
y = fft(signal, n);% compute DFT of input signal
|
||||
power = abs(y).^2/n; % power of the DFT
|
||||
|
||||
[val, ind] = max(power); % find the mx value of DFT and its index
|
||||
|
||||
% plots
|
||||
figure;
|
||||
|
||||
subplot(1,3,1) % time plot
|
||||
t=0:1/fs:(n-1)/fs; % time range
|
||||
plot(t, signal)
|
||||
xticks(0:0.1*fs:n*fs);
|
||||
xticklabels(0:0.1:n/fs);
|
||||
xlabel('Time (s)');
|
||||
ylabel('Amplitude (a.u.)');
|
||||
|
||||
subplot(1,3,2) % linear frequency plot
|
||||
f = (0:n-1)*(fs/n); % frequency range
|
||||
plot(f,power, 'b*'); hold on;
|
||||
plot(f,power, 'r');
|
||||
xlabel('Frequency (Hz)')
|
||||
ylabel('Power (a.u.)')
|
||||
|
||||
subplot(1,3,3) % log frequency plot
|
||||
plot(f,10*log10(power/power(ind)));
|
||||
xlabel('Frequency (Hz)')
|
||||
ylabel('Power (dB)')
|
||||
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
function signal_win = hammingWin(signal, signal_duration, sampling_freq, pad)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function signal_win = hammingWin(signal, signal_duration, sampling_freq, pad)
|
||||
% ex.: signal_win = hammingWin(signal, 2, 300, 1)
|
||||
%
|
||||
% Inputs:
|
||||
% - signal: location of the signal to window
|
||||
% - signal_duration: duration of the signal in seconds
|
||||
% - sampling_freq: sampling frequency in Hz
|
||||
% - pad: wether or not add zero padding (0 false; 1 true)
|
||||
%
|
||||
% Output:
|
||||
% - signal_win: signal of interest on which a hamming window was applied
|
||||
%
|
||||
% Author: Guillaume Gibert, guillaume.gibert@ecam.fr
|
||||
% Date: 04/03/2024
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% create the temporal array
|
||||
t=-signal_duration/2:1/sampling_freq:(signal_duration/2)-1/sampling_freq;
|
||||
% window duration is half of signal duration
|
||||
windowDuration = signal_duration/2;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% creates the Hamming time window
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
hammingWin = zeros(1, length(t));
|
||||
|
||||
for l_sample=1:windowDuration*sampling_freq
|
||||
hammingWin(l_sample+signal_duration*sampling_freq/4) = (0.54 - 0.46*cos(2*pi*(l_sample)/(signal_duration*sampling_freq/2)));
|
||||
end
|
||||
|
||||
figure;
|
||||
title("Hamming Window"); hold on;
|
||||
plot(t,hammingWin);
|
||||
|
||||
% apply the window on input signal
|
||||
for l_sample=1:length(t)
|
||||
signal_win(l_sample) = signal(l_sample) * hammingWin(l_sample);
|
||||
end
|
||||
|
||||
figure;
|
||||
title("Original and Windowed signals"); hold on;
|
||||
plot(t, signal); hold on;
|
||||
plot(t, signal_win);
|
||||
|
||||
frequencySpectrum(signal_win, sampling_freq/2,pad);
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
function signal_win = hanningWin(signal, signal_duration, sampling_freq, pad)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function signal_win = hanningWin(signal, signal_duration, sampling_freq, pad)
|
||||
% ex.: signal_win = hanningWin(signal, 2, 300, 1)
|
||||
%
|
||||
% Inputs:
|
||||
% - signal: location of the signal to window
|
||||
% - signal_duration: duration of the signal in seconds
|
||||
% - sampling_freq: sampling frequency in Hz
|
||||
% - pad: wether or not add zero padding (0=false; 1=true)
|
||||
%
|
||||
% Output:
|
||||
% - signal_win: signal of interest on which a hanning window was applied
|
||||
%
|
||||
% Author: Guillaume Gibert, guillaume.gibert@ecam.fr
|
||||
% Date: 04/03/2024
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% create the temporal array
|
||||
t=-signal_duration/2:1/sampling_freq:(signal_duration/2)-1/sampling_freq;
|
||||
% window duration is half of signal duration
|
||||
windowDuration = signal_duration/2;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% creates the Hanning time window
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
hanningWin = zeros(1, length(t));
|
||||
|
||||
for l_sample=1:windowDuration*sampling_freq
|
||||
hanningWin(l_sample+signal_duration*sampling_freq/4) = (0.5 - 0.5*cos(2*pi*(l_sample)/(signal_duration*sampling_freq/2)));
|
||||
end
|
||||
|
||||
figure;
|
||||
title("Hanning Window"); hold on;
|
||||
plot(t,hanningWin);
|
||||
|
||||
% apply the window on input signal
|
||||
for l_sample=1:length(t)
|
||||
signal_win(l_sample) = signal(l_sample) * hanningWin(l_sample);
|
||||
end
|
||||
|
||||
figure;
|
||||
title("Original and Windowed signals"); hold on;
|
||||
plot(t, signal); hold on;
|
||||
plot(t, signal_win);
|
||||
|
||||
frequencySpectrum(signal_win, sampling_freq/2,pad);
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
function signal_win = rectWin(signal, signal_duration, sampling_freq, pad)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function signal_win = rectWin(signal, signal_duration, sampling_freq, pad)
|
||||
% ex.: signal_win = rectWin(signal, 2, 300, 1)
|
||||
%
|
||||
% Inputs:
|
||||
% - signal: location of the signal to window
|
||||
% - signal_duration: duration of the signal in seconds
|
||||
% - sampling_freq: sampling frequency in Hz
|
||||
% - pad: wether or not add zero padding (0=false; 1=true)
|
||||
%
|
||||
% Output:
|
||||
% - signal_win: signal of interest on which a rectangular window was applied
|
||||
%
|
||||
% Author: Guillaume Gibert, guillaume.gibert@ecam.fr
|
||||
% Date: 04/03/2024
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
signal_duration = length(signal)/sampling_freq;
|
||||
% create the temporal array
|
||||
t=-signal_duration/2:1/sampling_freq:(signal_duration/2)-1/sampling_freq;
|
||||
% window duration is half of signal duration
|
||||
windowDuration = signal_duration/2;
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% creates the Rectangular time window
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rectangularWin = zeros(1, length(t));
|
||||
|
||||
for l_sample=1:windowDuration*sampling_freq
|
||||
rectangularWin(l_sample + signal_duration) = 1;
|
||||
end
|
||||
|
||||
figure;
|
||||
title("Rectangular Window"); hold on;
|
||||
plot(t,rectangularWin);
|
||||
|
||||
% apply the rectangular window
|
||||
for l_sample=1:length(t)
|
||||
signal_win(l_sample) = signal(l_sample) * rectangularWin(l_sample);
|
||||
end
|
||||
|
||||
figure;
|
||||
title("Original and Windowed signals"); hold on;
|
||||
plot(t, signal); hold on;
|
||||
plot(t, signal_win);
|
||||
|
||||
frequencySpectrum(signal_win, sampling_freq/2,pad);
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function spectrogram(signal, samplingFreq, step_size, window_size)
|
||||
% ex.: spectrogram(signal, 300, 50, 1000)
|
||||
%
|
||||
% Task: Plot the spectrogram of a given signal
|
||||
%
|
||||
% Inputs:
|
||||
% -signal: temporal signal to analyse
|
||||
% -samplingFreq: sampling frequency of the temporal signal
|
||||
% -step_size: how often the power spectrum will be computed in ms
|
||||
% -window_size: size of the analysing window in ms
|
||||
%
|
||||
% Ouput: None
|
||||
%
|
||||
% author: Guillaume Gibert (guillaume.gibert@ecam.fr)
|
||||
% date: 14/03/2023
|
||||
%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
figure;
|
||||
subplot(2,1,1);
|
||||
t=0:1/samplingFreq:length(signal)/samplingFreq-1/samplingFreq;
|
||||
plot(t, signal');
|
||||
xlim([0 length(signal)/samplingFreq-1/samplingFreq]);
|
||||
ylabel('Amplitude (norm. unit)');
|
||||
|
||||
subplot(2,1,2);
|
||||
step = fix(step_size*samplingFreq/1000); % one spectral slice every step_size ms
|
||||
window = fix(window_size*samplingFreq/1000); % window_size ms data window
|
||||
|
||||
|
||||
[S, f, t] = specgram(signal);
|
||||
specgram(signal, 2^nextpow2(window), samplingFreq, window, window-step);
|
||||
xlabel('Time (s)');
|
||||
ylabel('Frequency (Hz)');
|
||||
Loading…
Reference in New Issue