Merge branch 'develop'
This commit is contained in:
commit
a9df4f13e0
|
|
@ -27,6 +27,7 @@ windowDuration = signal_duration/2;
|
||||||
|
|
||||||
hammingWin = zeros(1, length(t));
|
hammingWin = zeros(1, length(t));
|
||||||
|
|
||||||
|
% change sampling_freq/4 to shift the signal
|
||||||
for l_sample=1:windowDuration*sampling_freq
|
for l_sample=1:windowDuration*sampling_freq
|
||||||
hammingWin(l_sample+signal_duration*sampling_freq/4) = (0.54 - 0.46*cos(2*pi*(l_sample)/(signal_duration*sampling_freq/2)));
|
hammingWin(l_sample+signal_duration*sampling_freq/4) = (0.54 - 0.46*cos(2*pi*(l_sample)/(signal_duration*sampling_freq/2)));
|
||||||
end
|
end
|
||||||
|
|
|
||||||
|
|
@ -27,6 +27,7 @@ windowDuration = signal_duration/2;
|
||||||
|
|
||||||
hanningWin = zeros(1, length(t));
|
hanningWin = zeros(1, length(t));
|
||||||
|
|
||||||
|
% change sampling_freq/4 to shift the signal
|
||||||
for l_sample=1:windowDuration*sampling_freq
|
for l_sample=1:windowDuration*sampling_freq
|
||||||
hanningWin(l_sample+signal_duration*sampling_freq/4) = (0.5 - 0.5*cos(2*pi*(l_sample)/(signal_duration*sampling_freq/2)));
|
hanningWin(l_sample+signal_duration*sampling_freq/4) = (0.5 - 0.5*cos(2*pi*(l_sample)/(signal_duration*sampling_freq/2)));
|
||||||
end
|
end
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,73 @@
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
% UNKNOWN SIGNAL
|
||||||
|
% Sampling frequency: 300 Hz
|
||||||
|
% Duration; 2 s
|
||||||
|
% First second: 0.1Hz, 30 Hz, 30.5 Hz, 60 Hz, 61 Hz
|
||||||
|
% Second second: 0.1Hz, 32 Hz, 36 Hz, 64 Hz, 72 Hz
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
% loads the signal package on Octave
|
||||||
|
% pkg load signal
|
||||||
|
|
||||||
|
% loads signal and its characteristics
|
||||||
|
signal = csvread('unknownsignal.csv');
|
||||||
|
|
||||||
|
%%%%%SIGNAL CHARACTERISTICS%%%%%
|
||||||
|
% sets sampling frequency
|
||||||
|
fps = 300; % -> freqMax of the signal should be < 150 Hz (Shannon-Nyquisit theorem), in practice freqMax < 60 Hz would be better
|
||||||
|
|
||||||
|
% computes the duration of the signal
|
||||||
|
duration = length(signal) / fps; % in s
|
||||||
|
|
||||||
|
% estimates its original frequency resolution
|
||||||
|
resolution = fps / length(signal); % in Hz
|
||||||
|
|
||||||
|
%%%%%STATIONARITY%%%%%
|
||||||
|
% temporal plot
|
||||||
|
figure;
|
||||||
|
plot(signal);
|
||||||
|
xticks(0:0.2*fps:length(signal)*fps);
|
||||||
|
xticklabels(0:0.2:length(signal)/fps);
|
||||||
|
xlabel('Time (s)');
|
||||||
|
ylabel('Amplitude (a.u.)');
|
||||||
|
|
||||||
|
% spectrogram
|
||||||
|
step_size = 50; %ms
|
||||||
|
window_size = 100; %ms
|
||||||
|
spectrogram(signal, fps, step_size, window_size);
|
||||||
|
|
||||||
|
% ccl: signal is not stationary, it is composed of 2 parts
|
||||||
|
|
||||||
|
%%%%%SPLIT SIGNAL INTO 2 PARTS%%%%%
|
||||||
|
% First part: [0 1s]
|
||||||
|
signal_1 = signal(1:end/2);
|
||||||
|
% Second part: [1s 2s]
|
||||||
|
signal_2 = signal(end/2+1:end);
|
||||||
|
|
||||||
|
%%%%%SPECTRAL ANALYSIS (RECTANGULAR WINDOW)%%%%%
|
||||||
|
%plots power spectrum with rectangular window
|
||||||
|
% 1st part of the signal with 1 Hz resolution
|
||||||
|
frequencySpectrum(signal_1, fps, 1);
|
||||||
|
% 1st part of the signal with 0.5 Hz resolution
|
||||||
|
frequencySpectrum(signal_1, fps, 0.5);
|
||||||
|
|
||||||
|
% 2nd part of the signal with 1 Hz resolution
|
||||||
|
frequencySpectrum(signal_2, fps, 1);
|
||||||
|
% 2nd part of the signal with 0.5 Hz resolution
|
||||||
|
frequencySpectrum(signal_2, fps, 0.5);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%SPECTRAL ANALYSIS (BLACKMAN WINDOW)%%%%%
|
||||||
|
%plots power spectrum with blackman window
|
||||||
|
signal_1_win = blackmanWin(signal_1);
|
||||||
|
% 1st part of the signal with 1 Hz resolution
|
||||||
|
frequencySpectrum(signal_1_win, fps, 1);
|
||||||
|
% 1st part of the signal with 0.5 Hz resolution
|
||||||
|
frequencySpectrum(signal_1_win, fps, 0.5);
|
||||||
|
|
||||||
|
signal_2_win = blackmanWin(signal_2);
|
||||||
|
% 2nd part of the signal with 1 Hz resolution
|
||||||
|
frequencySpectrum(signal_2_win, fps, 1);
|
||||||
|
% 2nd part of the signal with 0.5 Hz resolution
|
||||||
|
frequencySpectrum(signal_2_win, fps, 0.5);
|
||||||
|
|
@ -28,7 +28,7 @@ windowDuration = signal_duration/2;
|
||||||
rectangularWin = zeros(1, length(t));
|
rectangularWin = zeros(1, length(t));
|
||||||
|
|
||||||
for l_sample=1:windowDuration*sampling_freq
|
for l_sample=1:windowDuration*sampling_freq
|
||||||
rectangularWin(l_sample + signal_duration) = 1;
|
rectangularWin(l_sample + signal_duration*sampling_freq/4) = 1;
|
||||||
end
|
end
|
||||||
|
|
||||||
figure;
|
figure;
|
||||||
|
|
|
||||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue