|
|
||
|---|---|---|
| test | ||
| README.md | ||
README.md
Complete Calibration and Detection Procedure
Step 1: Setup Configuration Files
-
Create
arena_config.ymlwith fixed marker positions:markers: - id: 1 position: [0, 0] - id: 2 position: [0, 1] - id: 3 position: [0, 2] -
Create
arena_transformation.ymlwith an initial transformation matrix (example identity matrix):transformation_matrix: !!opencv-matrix rows: 3 cols: 3 dt: d data: [1, 0, 0, 0, 1, 0, 0, 0, 1]
Step 2: Calibrate the Camera
-
Run the
calibration_webcamnode to capture frames and calibrate the camera:rosrun your_package calibration_webcam -
Follow the on-screen instructions to capture at least 10 frames of the chessboard pattern from different angles and positions.
-
The calibration parameters will be saved to
camera_parameters.yml.
Step 3: Calibrate the Arena
-
Run the
arena_calibrationnode to detect ArUco markers and calibrate the arena:rosrun your_package arena_calibration -
The detected marker positions and transformation matrix will be saved to
arena_config.ymlandarena_transformation.ymlrespectively.
Step 4: Run the Main Node
-
Run the
aruco_detectornode to detect ArUco markers and display their positions in the arena:rosrun your_package aruco_detector -
The node will process frames from the camera, detect ArUco markers, and display their positions in the arena frame.