Finished : everything working and commented
This commit is contained in:
parent
519897d82d
commit
0b627e95f4
|
|
@ -1,4 +1,20 @@
|
|||
function DrawObstacles()
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function DrawObstacles
|
||||
%
|
||||
% Task: Creates 10 000 random points in the x y cartesian space that are part of the known obstacles
|
||||
% Computes their corresponding q1 q2 values thanks to Inverse Kinematics
|
||||
% adds the obstacles in a red color to the figure that should have been previously drawned using PRM or RRT algorithms
|
||||
%
|
||||
%
|
||||
% Inputs:
|
||||
%
|
||||
% Outputs:
|
||||
%
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
L1 = 2;
|
||||
L2 = 1;
|
||||
|
|
|
|||
23
MyFK.m
23
MyFK.m
|
|
@ -1,4 +1,27 @@
|
|||
function [x, y] = MyFK(L1, L2, Q1, Q2)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function [q1 q2 q1_ q2_] = MyFK(L1, L2, Q1, Q2)
|
||||
%
|
||||
% Task: returns the x y coordinates in the cartesian space
|
||||
% from a given point in the q1 q2 joint space
|
||||
% using geometry rules since we know that we have two links only of length L1 and L2
|
||||
%
|
||||
%
|
||||
% Inputs:
|
||||
%-L1: length of the first link of the 2d planar 2 link robot arm
|
||||
%-L2: length of the second link of the 2d planar 2 link robot arm
|
||||
%-q1: q1 coordinate of the given point
|
||||
%-q2: q2 coordinate of the given point
|
||||
%
|
||||
% Outputs:
|
||||
%-x: x coordinate of the given point
|
||||
%-y: x coordinate of the given point
|
||||
%
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
x = L1*cosd(Q1) + L2*cosd(Q1+Q2);
|
||||
y = L1*sind(Q1) + L2*sind(Q1+Q2);
|
||||
endfunction
|
||||
25
MyIK.m
25
MyIK.m
|
|
@ -1,4 +1,29 @@
|
|||
function [q1 q2 q1_ q2_] = MyIK(L1, L2, x, y)
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function [q1 q2 q1_ q2_] = MyIK(L1, L2, x, y)
|
||||
%
|
||||
% Task: returns the two possible solutions of q1 q2 coordinate in the joint space
|
||||
% from a given point in the x y cartesian space
|
||||
% using geometry rules since we know that we have two links only of length L1 and L2
|
||||
%
|
||||
%
|
||||
% Inputs:
|
||||
%-L1: length of the first link of the 2d planar 2 link robot arm
|
||||
%-L2: length of the second link of the 2d planar 2 link robot arm
|
||||
%-x: x coordinate of the given point
|
||||
%-y: x coordinate of the given point
|
||||
%
|
||||
% Outputs:
|
||||
%-q1: q1 coordinate of the given point (first solution)
|
||||
%-q2: q2 coordinate of the given point (first solution)
|
||||
%-q1_: q1 coordinate of the given point (second solution)
|
||||
%-q2_: q2 coordinate of the given point (second solution)
|
||||
%
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
q1 = acosd(x/sqrt(x^2+y^2)) - acosd( (-L2^2+x^2+y^2+L1^2) / (2*L1*sqrt(x^2+y^2)));
|
||||
q2 = 180 - acosd( (L1^2+L2^2-(x^2+y^2)) / (2*L1*L2));
|
||||
|
||||
|
|
|
|||
124
buildPRM.m
124
buildPRM.m
|
|
@ -1,86 +1,75 @@
|
|||
function [nbNode, obstacle, points] = buildPRM()
|
||||
function [nbNodes, obstacle, points] = buildPRM()
|
||||
|
||||
addpath("C:/motion_planning");
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function [x, y] = buildPRM()
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function [nbNodes, obstacle, points] = buildPRM()
|
||||
%
|
||||
% Task: Implement a code that creates a map of random points in the q1 q2 joint space
|
||||
% and checks the presence of an obstacle between each of them in the x y cartesian space
|
||||
% That algorithm is called Probabilistic RoadMaps (PRM)
|
||||
%
|
||||
% Task: Implement a code that creates a map and the finds a path between
|
||||
% a given start point and a goal point (in C-space) while avoiding collisions
|
||||
|
||||
% Inputs: q1 random variable
|
||||
% q2 random variable
|
||||
%
|
||||
% Outputs: JTee
|
||||
% Outputs:
|
||||
% -nbNodes: number of nodes of the graph excluding the starting and goal points
|
||||
% -obstacle: a matrix containing the distance between connected nodes
|
||||
% (NaN refers to not connected nodes)
|
||||
% The matrix has a size of (nbNodes+2)x(nbNodes+2)
|
||||
%-points: a matrix saving the q1 q2 and x y coordinates of each point,
|
||||
% the 1st column describing the 1st (start) point
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
% Yanis DIALLO (yanis.diallo@ecam.fr)
|
||||
% 30/11/2021
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
clc
|
||||
close all
|
||||
S = [2, 0];
|
||||
G = [-2, 0];
|
||||
|
||||
[S, G, randVmin, randVmax, L1, L2] = setParams();
|
||||
|
||||
[Sq1, Sq2] = MyIK(2,1,S(1),S(2)); %-28.995 104.48
|
||||
[Gq1, Gq2] = MyIK(2,1,G(1),G(2)); %151.04 104.48
|
||||
points = [Sq1 Sq2 S(1) S(2)]';
|
||||
obstacle = [];
|
||||
randVmin = -180;
|
||||
randVmax = 180;
|
||||
L1 = 2;
|
||||
L2 = 1;
|
||||
GapValue = 10;
|
||||
X_space = [S(1) G(1)];
|
||||
Y_space = [S(2) G(2)];
|
||||
|
||||
%DH Parameters
|
||||
## d = [0, 0];
|
||||
## a = [L1, L2];
|
||||
## alpha = [0, 0];
|
||||
## jointNumber = 1;
|
||||
## %End effector position
|
||||
## Bmatrix = [0; 0; 0; 1];
|
||||
|
||||
%____________Generation des 10 points_________
|
||||
n=columns(points);
|
||||
WhileCond = 12;
|
||||
n=columns(points); % represents the number of validated points
|
||||
WhileCond = 12; % number of desired points in the tree
|
||||
while n<WhileCond
|
||||
|
||||
q1 = randVmin + (randVmax - randVmin)* rand();
|
||||
q1 = randVmin + (randVmax - randVmin)* rand();% setting a new random point r
|
||||
q2 = randVmin + (randVmax - randVmin)* rand();
|
||||
|
||||
[x, y]=MyFK(L1,L2,q1,q2);
|
||||
|
||||
%Is the end effector colliding with obstacle
|
||||
%Checking if the new random point (end effector) is part of a known obstacle in X Y cartesian space
|
||||
if not(y >= L1 || y <= -L1 || (x>=-L2 && x<=L2 && y>=-L2 && y<=L2))
|
||||
|
||||
n=columns(points);
|
||||
|
||||
%Store q1 q2 x y values
|
||||
|
||||
|
||||
|
||||
if n==WhileCond-1
|
||||
if n==WhileCond-1 % if it is the last iteration (concerns the goal point)
|
||||
figure 1
|
||||
hold on
|
||||
text(Gq1, Gq2, 'G', 'FontSize', 20);
|
||||
text(Gq1, Gq2, 'G', 'FontSize', 20); %text function is used to plot points with their description
|
||||
|
||||
|
||||
figure 2
|
||||
hold on
|
||||
text(G(1), G(2), 'G', 'FontSize', 20);
|
||||
|
||||
q1 = Gq1;
|
||||
q1 = Gq1; % the values are not random but known
|
||||
q2 = Gq2;
|
||||
x = G(1);
|
||||
y = G(2);
|
||||
|
||||
points = [points [q1;q2;x;y]];
|
||||
points = [points [q1;q2;x;y]]; %Store q1 q2 x y values
|
||||
|
||||
obstacle(n+1,n+1) = NaN;
|
||||
elseif n==1
|
||||
elseif n==1 % if it is the first iteration (concerns the start point)
|
||||
figure 1
|
||||
hold on
|
||||
text(Sq1, Sq2, 'S', 'FontSize', 20);
|
||||
|
|
@ -91,7 +80,7 @@ function [nbNode, obstacle, points] = buildPRM()
|
|||
hold on
|
||||
text(S(1), S(2), 'S', 'FontSize', 20);
|
||||
|
||||
obstacle(n,n) = NaN;
|
||||
obstacle(n,n) = NaN; % enlarges the obstacle matrix so we can write later the valid links computed around the new point
|
||||
obstacle(n+1,n+1) = NaN;
|
||||
|
||||
points = [points [q1;q2;x;y]];
|
||||
|
|
@ -106,63 +95,26 @@ function [nbNode, obstacle, points] = buildPRM()
|
|||
drawnow
|
||||
|
||||
|
||||
for j=1:n
|
||||
q1 = points(1,n);
|
||||
for j=1:n % for each point of the map
|
||||
q1 = points(1,n); % we are going to compute links between the new point (q1 q2)
|
||||
q2 = points(2,n);
|
||||
q1_stored = points(1,j);
|
||||
q1_stored = points(1,j); % and each one that is stored (q1_stored q2_stored)
|
||||
q2_stored = points(2,j);
|
||||
|
||||
%{
|
||||
obstacle(j,n) = checkingLine(q1, q2, q1_stored, q2_stored, GapValue, L1, L2, n, j, points);
|
||||
obstacle(n,j) = checkingLine(q1, q2, q1_stored, q2_stored, GapValue, L1, L2, n, j, points);
|
||||
%}
|
||||
|
||||
if q1_stored != q1
|
||||
obstacle(j,n) = checkingLine(GapValue, L1, L2, n, j, points); % we store the distance (NaN if invalid) between the points in a matrix
|
||||
obstacle(n,j) = checkingLine(GapValue, L1, L2, n, j, points); % that is designed as a double entry table
|
||||
|
||||
%defining Q2 as a function of Q1
|
||||
A = (q2_stored- q2)/(q1_stored - q1);
|
||||
B = q2 - A * q1;
|
||||
Q2 = @(Q1) A*Q1+B;
|
||||
|
||||
%getting the sampling direction
|
||||
if q1 > q1_stored
|
||||
gap = -GapValue;
|
||||
else
|
||||
gap = GapValue;
|
||||
endif
|
||||
|
||||
|
||||
%getting the sample points
|
||||
for g=q1:gap:q1_stored
|
||||
Q1test = g;
|
||||
Q2test = Q2(g);
|
||||
|
||||
%Is the end effector colliding with obstacle
|
||||
[Xtest, Ytest]=MyFK(L1,L2,Q1test,Q2test);
|
||||
|
||||
%filling the obstacle matrix
|
||||
if obstacle(j, n) !=NaN && (Ytest >= L1 || Ytest <= -L1 || (Xtest>=-L2 && Xtest<=L2 && Ytest>=-L2 && Ytest<=L2)) %verifie les obstacles
|
||||
obstacle(j,n) = NaN;
|
||||
obstacle(n,j) = NaN;
|
||||
endif
|
||||
|
||||
endfor
|
||||
|
||||
if obstacle(j, n)==0 && n!=j
|
||||
obstacle(j,n) = sqrt( (points(1,j)-points(1,n))^2 + (points(2,j)-points(2,n))^2);
|
||||
obstacle(n,j) = sqrt( (points(1,j)-points(1,n))^2 + (points(2,j)-points(2,n))^2);
|
||||
if ~isnan(obstacle(j, n)) && n!=j % if the points of index n and j can be linked
|
||||
Xplot = [q1, q1_stored];
|
||||
Yplot = [q2, q2_stored];
|
||||
figure 1
|
||||
plot(Xplot, Yplot, 'Color', 'b')
|
||||
plot(Xplot, Yplot, 'Color', 'b') % we plot the link between them
|
||||
drawnow
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
endfor
|
||||
|
||||
endif
|
||||
endwhile
|
||||
nbNode = WhileCond-2;
|
||||
nbNodes = WhileCond-2;
|
||||
endfunction
|
||||
|
|
|
|||
95
buildRRT.m
95
buildRRT.m
|
|
@ -1,22 +1,42 @@
|
|||
function [nbNode, obstacle, points] = buildRRT()
|
||||
function [nbNodes, obstacle, points] = buildRRT()
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function [nbNodes, obstacle, points] = buildPRM()
|
||||
%
|
||||
% Task: Implement a code that creates a tree of points that are drawn in a random way in the q1 q2 joint space
|
||||
% The tree progresses by a predefined length towards random direction, starting from the S point,
|
||||
% until it finds a way to connect the start and goal points
|
||||
% that algorithm is called Rapidly-exploring Random Trees algorithm
|
||||
%
|
||||
%
|
||||
% Inputs:
|
||||
%
|
||||
% Outputs:
|
||||
% -nbNodes: number of nodes of the graph excluding the starting and goal points
|
||||
% -obstacle: a matrix containing the distance between connected nodes
|
||||
% (NaN refers to not connected nodes)
|
||||
% The matrix has a size of (nbNodes+2)x(nbNodes+2)
|
||||
%-points: a matrix saving the q1 q2 and x y coordinates of each point,
|
||||
% the 1st column describing the 1st (start) point
|
||||
%
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
clc
|
||||
close all
|
||||
|
||||
S = [2, 0];
|
||||
G = [-2, 0];
|
||||
[S, G, randVmin, randVmax, L1, L2] = setParams();
|
||||
|
||||
[Sq1, Sq2] = MyIK(2,1,S(1),S(2)); %-28.995 104.48
|
||||
[Gq1, Gq2] = MyIK(2,1,G(1),G(2)); %151.04 104.48
|
||||
randVmin = -180;
|
||||
randVmax = 180;
|
||||
L1 = 2;
|
||||
L2 = 1;
|
||||
|
||||
q1_1st = randVmin + (randVmax - randVmin)* rand();
|
||||
q2_1st = randVmin + (randVmax - randVmin)* rand();
|
||||
|
||||
q1_1st = randVmin + (randVmax - randVmin)* rand(); % first q1 random value
|
||||
q2_1st = randVmin + (randVmax - randVmin)* rand(); % first q2 random value
|
||||
|
||||
|
||||
[x, y]=MyFK(L1,L2,q1_1st,q2_1st);
|
||||
points = [Sq1 Sq2 S(1) S(2)]';
|
||||
points = [Sq1 Sq2 S(1) S(2)]'; %flling the first column of the point array with the start point data
|
||||
|
||||
GapValue = 5;
|
||||
distArr = [];
|
||||
|
|
@ -26,28 +46,28 @@ function [nbNode, obstacle, points] = buildRRT()
|
|||
axis([-180 180 -180 180])
|
||||
hold on
|
||||
plot(points(1, 1), points(2, 1))
|
||||
text(points(1, 1), points(2, 1), 'S', 'FontSize', 20);
|
||||
text(points(1, 1), points(2, 1), 'S', 'FontSize', 20); %drawing a 'S' letter at q1 q2
|
||||
|
||||
minTable = [];
|
||||
|
||||
n=0;
|
||||
WhileCond = 15;
|
||||
n=0; % represents the number of validated points
|
||||
WhileCond = 15; % number of desired points in the tree
|
||||
|
||||
while n<WhileCond
|
||||
distArr = [];
|
||||
distArr = []; %resets the distArr array for each point (each iteration)
|
||||
|
||||
q1_r = randVmin + (randVmax - randVmin)* rand();
|
||||
q1_r = randVmin + (randVmax - randVmin)* rand(); % setting a new random point r
|
||||
q2_r = randVmin + (randVmax - randVmin)* rand();
|
||||
|
||||
|
||||
[x, y]=MyFK(L1,L2,q1_r,q2_r);
|
||||
[x, y]=MyFK(L1,L2,q1_r,q2_r); % getting the X Y coordinates of r point
|
||||
|
||||
n = columns(points);
|
||||
|
||||
minTable(1, n) = inf;
|
||||
obstacle(n,n) = NaN;
|
||||
if n==WhileCond
|
||||
q1_r = Gq1;
|
||||
obstacle(n,n) = NaN; % increases the size of obstacle matrix
|
||||
if n==WhileCond % if we have enough points
|
||||
q1_r = Gq1; % we do not link a p point with a random one but with the Goal one
|
||||
q2_r = Gq2;
|
||||
for j=1:n
|
||||
q1_p = points(1,j);
|
||||
|
|
@ -56,51 +76,51 @@ function [nbNode, obstacle, points] = buildRRT()
|
|||
pointsTemp = [points [q1_r q2_r 0 0]']; %new point r values are stored in n+1 column of pointsTemp
|
||||
distArr = [distArr checkingLine(GapValue, L1, L2, n+1, j, pointsTemp)];
|
||||
endfor
|
||||
if isnan(min(distArr))
|
||||
WhileCond++;
|
||||
if isnan(min(distArr)) % if the line can not be drawn between the closest and goal point
|
||||
WhileCond++; % we keep adding more points
|
||||
else
|
||||
pdefL = min(distArr);
|
||||
pdefL = min(distArr); % we do not use the predefined length but the one separing the closest and goal points
|
||||
endif
|
||||
elseif n > 1
|
||||
for j=1:n
|
||||
elseif n > 1 % if is not the first iteration
|
||||
for j=1:n % for each point in the tree
|
||||
q1_p = points(1,j);
|
||||
q2_p = points(2,j);
|
||||
|
||||
pointsTemp = [points [q1_r q2_r 0 0]']; %new point r values are stored in n+1 column of pointsTemp
|
||||
distArr = [distArr checkingLine(GapValue, L1, L2, n+1, j, pointsTemp)];
|
||||
distArr = [distArr checkingLine(GapValue, L1, L2, n+1, j, pointsTemp)]; % we compute the distance between each point in the tree (index j) and the new r one (index n+1)
|
||||
endfor
|
||||
|
||||
else
|
||||
else % if it is the first iteration
|
||||
q1_p = points(1,1);
|
||||
q2_p = points(2,1);
|
||||
pointsTemp = [points [q1_r q2_r 0 0]'];
|
||||
distArr = [distArr checkingLine(GapValue, L1, L2, 1, 2, pointsTemp)];
|
||||
distArr = [distArr checkingLine(GapValue, L1, L2, 1, 2, pointsTemp)]; % we compute the distance between the first point in the tree (index 1) and the new r one (index n+1)
|
||||
|
||||
endif
|
||||
[minDist, minIndex] = min(distArr); %validé
|
||||
[minDist, minIndex] = min(distArr); % we save which point is the closest one from the new r point and we note the distance between them
|
||||
|
||||
if ~isnan(minDist)
|
||||
if ~isnan(minDist) % if the line between p and r can be drawn (does not intersect an obstacle in X Y cartesian space)
|
||||
q1_p = points(1, minIndex);
|
||||
q2_p = points(2, minIndex);
|
||||
|
||||
q1_pdefL = q1_p + (pdefL * (q1_r - q1_p) / minDist);
|
||||
q2_pdefL = q2_p + (pdefL * (q2_r - q2_p) / minDist); % from thales theorem
|
||||
q1_pdefL = q1_p + (pdefL * (q1_r - q1_p) / minDist); % thanks to some theory coming from the Thales theorem
|
||||
q2_pdefL = q2_p + (pdefL * (q2_r - q2_p) / minDist); % we compute the q1 and q2 values of the point that is on the line between p and r, away of pdefL from p
|
||||
|
||||
points(1, n+1) = q1_pdefL;
|
||||
points(1, n+1) = q1_pdefL; %we note those two values in the points (= tree) matrix since we consider them as 'validated'
|
||||
points(2, n+1) = q2_pdefL;
|
||||
|
||||
if n+1!=minIndex
|
||||
obstacle(n+1, minIndex) = pdefL;
|
||||
obstacle(minIndex, n+1) = pdefL;
|
||||
obstacle(n+1, minIndex) = pdefL; % we note the distance between p and r in the obstacle matrix
|
||||
obstacle(minIndex, n+1) = pdefL; % which is built as a double entry table (going from S to G)
|
||||
endif
|
||||
|
||||
figure 1
|
||||
hold on
|
||||
plot(points(1, n), points(2, n))
|
||||
if pdefL == min(distArr) %which occurs only at the last iteration
|
||||
plot(points(1, n), points(2, n)) % we plot the new values and add a description to it
|
||||
if pdefL == min(distArr) % this condition is valid only for the last iteration
|
||||
text(points(1, n+1), points(2, n+1), 'G', 'FontSize', 20);
|
||||
endif
|
||||
if n>1
|
||||
if n>1 % valid for every iteration except the first and last ones
|
||||
text(points(1, n), points(2, n), int2str(n-1), 'FontSize', 20);
|
||||
endif
|
||||
Xplot = [q1_p, q1_pdefL];
|
||||
|
|
@ -109,4 +129,5 @@ function [nbNode, obstacle, points] = buildRRT()
|
|||
drawnow
|
||||
endif
|
||||
endwhile
|
||||
nbNodes = WhileCond-1;
|
||||
endfunction
|
||||
|
|
@ -1,11 +1,43 @@
|
|||
function dist = checkingLine(GapValue, L1, L2, n, j, points)
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function dist = checkingLine(GapValue, L1, L2, n, j, points)
|
||||
%
|
||||
% Task: Computes the distance between two points in the q1 q2 joint space
|
||||
% excepts when they can not be linked because it would collide a known obstacle in the X Y cartesian space
|
||||
% The 'colliding' (or not) is verified by sampling the line in q1 q2 joint space and computing the X Y corresponding parameters
|
||||
% for each of the sampled points on the line, as we know the obstacles position in the X Y cartesian space only
|
||||
%
|
||||
% Inputs:
|
||||
%-GapValue: the distance between the q1 values of each sampled points along the line
|
||||
%-L1: length of the first link of the 2d planar 2 link robot arm
|
||||
%-L2: length of the second link of the 2d planar 2 link robot arm
|
||||
%-n: index of the first given point in the 'points' matrix
|
||||
%-j: index of the second given point in the 'points' matrix
|
||||
%-points: a matrix saving the q1 q2 and x y coordinates of each point,
|
||||
% the 1st column describing the 1st (start) point
|
||||
%
|
||||
% Outputs:
|
||||
% -nbNodes: number of nodes of the graph excluding the starting and goal points
|
||||
% -obstacle: a matrix containing the distance between connected nodes
|
||||
% (NaN refers to not connected nodes)
|
||||
% The matrix has a size of (nbNodes+2)x(nbNodes+2)
|
||||
%-points: a matrix saving the q1 q2 and x y coordinates of each point,
|
||||
% the 1st column describing the 1st (start) point
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
q1 = points(1,j);
|
||||
q2 = points(2,j);
|
||||
q1_ = points(1,n);
|
||||
q2_ = points(2,n);
|
||||
|
||||
|
||||
dist = 0;
|
||||
dist = 0; % 0 value, if not modified, will represent that we didn't note about an invalid link between the n and j points
|
||||
if n==j
|
||||
dist = NaN;
|
||||
endif
|
||||
|
|
@ -29,21 +61,16 @@ function dist = checkingLine(GapValue, L1, L2, n, j, points)
|
|||
Q1test = g;
|
||||
Q2test = Q2(g);
|
||||
|
||||
%Is the end effector colliding with obstacle
|
||||
%Is each sampled point from the line colliding with an obstacle in X Y cartesian space
|
||||
[Xtest, Ytest]=MyFK(L1,L2,Q1test,Q2test);
|
||||
|
||||
%filling the obstacle matrix
|
||||
% if a sampled point is colliding and we haven't already noted it, we do
|
||||
if dist !=NaN && (Ytest >= L1 || Ytest <= -L1 || (Xtest>=-L2 && Xtest<=L2 && Ytest>=-L2 && Ytest<=L2)) %verifie les obstacles
|
||||
dist = NaN;
|
||||
|
||||
%{
|
||||
X_space = [X_space Xtest];
|
||||
Y_space = [Y_space Ytest];
|
||||
%}
|
||||
endif
|
||||
|
||||
endfor
|
||||
if dist ==0 && n!=j
|
||||
if dist ==0 && n!=j % if we didn't note nothing about the link between n and j, we compute the distance
|
||||
dist = sqrt( (points(1,j)-points(1,n))^2 + (points(2,j)-points(2,n))^2);
|
||||
endif
|
||||
endif
|
||||
|
|
|
|||
|
|
@ -1,19 +1,34 @@
|
|||
function planPathPRM()
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function planPathPRM()
|
||||
%
|
||||
% Task: Finding the shortest path between the start and goal points (using dijkstra algorithm)
|
||||
% in a map of linked random points that explores the q1 q2 space (using Probabilistic RoadMaps algorithm)
|
||||
%
|
||||
%
|
||||
% Inputs:
|
||||
%
|
||||
% Outputs:
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
[nbNode, visGraph, points] = buildPRM();
|
||||
[distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(nbNode, visGraph);
|
||||
visGraph
|
||||
addpath("C:/Users/Admin/Documents/ProjectMotionPlanning/motion_planning");
|
||||
Q1plot = [];
|
||||
Q2plot = [];
|
||||
X_plot = [];
|
||||
Y_plot = [];
|
||||
GapValue = 1;
|
||||
nodeTrajectory = [columns(points) nodeTrajectory];
|
||||
nodeTrajectory = [columns(points) nodeTrajectory]; % we add the index of the last (goal) point to that array
|
||||
|
||||
for i=1:columns(nodeTrajectory)
|
||||
Q1plot = [Q1plot points(1, nodeTrajectory(i))];
|
||||
for i=1:columns(nodeTrajectory) %runs through the nodeTrajectory array
|
||||
Q1plot = [Q1plot points(1, nodeTrajectory(i))]; %we note the q1 and q2 values that are to be plot as the shortest path
|
||||
Q2plot = [Q2plot points(2, nodeTrajectory(i))];
|
||||
|
||||
% we define the lines composing the shortest path using the usual Ax+B method
|
||||
if i>1
|
||||
|
||||
|
||||
|
|
@ -22,6 +37,7 @@ function planPathPRM()
|
|||
|
||||
Q2 = @(Q1) A*Q1+B;
|
||||
|
||||
% we sample the line
|
||||
if Q1plot(i) > Q1plot(i-1)
|
||||
gap = -GapValue;
|
||||
else
|
||||
|
|
@ -31,10 +47,10 @@ function planPathPRM()
|
|||
Q1test = g;
|
||||
Q2test = Q2(g);
|
||||
|
||||
%Is the end effector colliding with obstacle
|
||||
%we compute the x y coordinates that are matching the sample points
|
||||
[Xtest, Ytest]=MyFK(2,1,Q1test,Q2test);
|
||||
|
||||
X_plot = [X_plot Xtest];
|
||||
X_plot = [X_plot Xtest];% we note the x and y values of the sample points
|
||||
Y_plot = [Y_plot Ytest];
|
||||
endfor
|
||||
endif
|
||||
|
|
@ -45,17 +61,19 @@ function planPathPRM()
|
|||
axis([-180 180 -180 180]);
|
||||
title('q1 q2 Joint Space');
|
||||
hold on
|
||||
plot(Q1plot, Q2plot, 'Color', 'g', 'LineWidth', 1.5)
|
||||
plot(Q1plot, Q2plot, 'Color', 'g', 'LineWidth', 1.5)% we plot the shortest path in the q1 q2 joint space
|
||||
|
||||
figure 2
|
||||
title('X-Y Cartesian Space');
|
||||
axis([-3 3 -3 3]);
|
||||
hold all
|
||||
text(X_plot, Y_plot, '*', 'FontSize', 10, 'Color', 'g');
|
||||
text(X_plot, Y_plot, '*', 'FontSize', 10, 'Color', 'g');% we plot the shortest path in the x y cartesian space
|
||||
|
||||
for i=2:columns(nodeTrajectory)-1
|
||||
text(points(3, nodeTrajectory(i)), points(4, nodeTrajectory(i)), int2str(nodeTrajectory(i)-1), 'FontSize', 20);
|
||||
text(points(3, nodeTrajectory(i)), points(4, nodeTrajectory(i)), int2str(nodeTrajectory(i)-1), 'FontSize', 20); % we add the description of each node
|
||||
endfor
|
||||
|
||||
% we draw the two circles defining the workspace
|
||||
x = 3*cos(0:0.01*pi:2*pi);
|
||||
y = 3*sin(0:0.01*pi:2*pi);
|
||||
plot(x,y, 'Color', 'k');
|
||||
|
|
|
|||
105
planPathRRT.m
105
planPathRRT.m
|
|
@ -1,40 +1,113 @@
|
|||
function planPathRRT
|
||||
addpath("C:/Users/Admin/Documents/ProjectMotionPlanning/motion_planning");
|
||||
GapValue=5;
|
||||
L1=2;
|
||||
L2=1;
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function planPathPRM()
|
||||
%
|
||||
% Task: Finding the shortest path between the start and goal points (using dijkstra algorithm)
|
||||
% in a tree of linked random points that explores the q1 q2 space (using Rapidly-exploring Random Trees algorithm)
|
||||
%
|
||||
%
|
||||
% Inputs:
|
||||
%
|
||||
% Outputs:
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
addpath("C:/Users/Admin/Documents/ProjectMotionPlanning/motion_planning"); % gets access to the scripts that are stored in that folder
|
||||
|
||||
[S, G, randVmin, randVmax, L1, L2] = setParams();
|
||||
|
||||
GapValue=1;
|
||||
nodeTrajCut = [];
|
||||
[nbNode, visGraph, points] = buildRRT();
|
||||
|
||||
for i=1:columns(visGraph)
|
||||
for j=1:columns(visGraph)
|
||||
if visGraph(i,j)==0
|
||||
visGraph(i,j) = NaN;
|
||||
if visGraph(i,j)==0 % if a link has not been noted with the distance
|
||||
visGraph(i,j) = NaN; % we set it as invalid
|
||||
endif
|
||||
endfor
|
||||
endfor
|
||||
|
||||
[distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(nbNode, visGraph);
|
||||
|
||||
Q1plot = [];
|
||||
Q2plot = [];
|
||||
X_plot = [];
|
||||
Y_plot = [];
|
||||
|
||||
nodeTrajectory = [columns(points) nodeTrajectory]
|
||||
nodeTrajectory = [columns(points) nodeTrajectory]; % we add the index of the last (goal) point to that array
|
||||
|
||||
for i=columns(nodeTrajectory):-1:1
|
||||
i
|
||||
if ~isnan(checkingLine(GapValue, L1, L2, 1, nodeTrajectory(i), points))
|
||||
nodeTrajCut = [nodeTrajCut nodeTrajectory(i)];
|
||||
for i=columns(nodeTrajectory):-1:1 %runs through the nodeTrajectory array from the end to the beginning
|
||||
if ~isnan(checkingLine(GapValue, L1, L2, 1, nodeTrajectory(i), points)) % if a line can be drawn between the start point and the one of index i
|
||||
nodeTrajCut = [nodeTrajCut nodeTrajectory(i)]; % we note the distance between those points
|
||||
maxIndex = i;
|
||||
endif
|
||||
endfor
|
||||
nodeTrajCut
|
||||
nodeTrajectory = [16 max(nodeTrajCut) 1]
|
||||
for i=1:columns(nodeTrajectory)
|
||||
Q1plot = [Q1plot points(1, nodeTrajectory(i))];
|
||||
|
||||
nodeTrajectory = [nodeTrajectory(1:maxIndex) max(nodeTrajCut) 1]; % as we want to travel the maximal distance from the start point, withouth going through the first branches, we take the maximum value of the nodeTrajCut array
|
||||
|
||||
for i=1:columns(nodeTrajectory) % running through the new nodeTrajectory array
|
||||
Q1plot = [Q1plot points(1, nodeTrajectory(i))]; %we note the q1 and q2 values that are to be plot as the shortest path
|
||||
Q2plot = [Q2plot points(2, nodeTrajectory(i))];
|
||||
|
||||
if i>1 % for the points that are not the start one
|
||||
|
||||
% we define the lines composing the shortest path using the usual Ax+B method
|
||||
A = (Q2plot(i-1)- Q2plot(i))/(Q1plot(i-1) - Q1plot(i));
|
||||
B = Q2plot(i) - A * Q1plot(i);
|
||||
|
||||
Q2 = @(Q1) A*Q1+B;
|
||||
|
||||
% we sample the line
|
||||
if Q1plot(i) > Q1plot(i-1)
|
||||
gap = -GapValue;
|
||||
else
|
||||
gap = GapValue;
|
||||
endif
|
||||
for g=Q1plot(i):gap:Q1plot(i-1)
|
||||
Q1test = g;
|
||||
Q2test = Q2(g);
|
||||
|
||||
%we compute the x y coordinates that are matching the sample points
|
||||
[Xtest, Ytest]=MyFK(2,1,Q1test,Q2test);
|
||||
if g==Q1plot(i) % as the sampling starts from a node that condition means that we are computing about a node
|
||||
points(3, nodeTrajectory(i)) = Xtest; % we note the x and y values of the nodes
|
||||
points(4, nodeTrajectory(i)) = Ytest;
|
||||
endif
|
||||
|
||||
X_plot = [X_plot Xtest]; % we note the x and y values of the sample points
|
||||
Y_plot = [Y_plot Ytest];
|
||||
endfor
|
||||
endif
|
||||
endfor
|
||||
|
||||
figure 1
|
||||
axis([-180 180 -180 180]);
|
||||
title('q1 q2 Joint Space');
|
||||
hold on
|
||||
plot(Q1plot, Q2plot, 'Color', 'g', 'LineWidth', 1.5)
|
||||
plot(Q1plot, Q2plot, 'Color', 'g', 'LineWidth', 1.5) % we plot the shortest path in the q1 q2 joint space
|
||||
|
||||
figure 2
|
||||
title('X-Y Cartesian Space');
|
||||
axis([-3 3 -3 3]);
|
||||
hold all
|
||||
text(X_plot, Y_plot, '*', 'FontSize', 10, 'Color', 'g');% we plot the shortest path in the x y cartesian space
|
||||
|
||||
for i=2:columns(nodeTrajectory)-1
|
||||
text(points(3, nodeTrajectory(i)), points(4, nodeTrajectory(i)), int2str(nodeTrajectory(i)-1), 'FontSize', 20); % we add the description of each node
|
||||
endfor
|
||||
|
||||
text(S(1), S(2), 'S', 'FontSize', 20);
|
||||
text(G(1), G(2), 'G', 'FontSize', 20);
|
||||
|
||||
% we draw the two circles defining the workspace
|
||||
x = 3*cos(0:0.01*pi:2*pi);
|
||||
y = 3*sin(0:0.01*pi:2*pi);
|
||||
plot(x,y, 'Color', 'k');
|
||||
|
||||
x = cos(0:0.01*pi:2*pi);
|
||||
y = sin(0:0.01*pi:2*pi);
|
||||
plot(x,y, 'Color', 'k');
|
||||
endfunction
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
function [S, G, randVmin, randVmax, L1, L2] = setParams()
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%function [S, G, randVmin, randVmax, L1, L2] = setParams()
|
||||
%
|
||||
% Task: defines the parameters that are necessary to the running scrpits
|
||||
% so we don't have to define them at the beginning of each scrpit
|
||||
% and we can change them here once, the changes will be taken in account everywhere
|
||||
%
|
||||
%
|
||||
% Inputs:
|
||||
%
|
||||
% Outputs:
|
||||
%-S: x y coordinates of the start point
|
||||
%-G: x y coordinates of the goal point
|
||||
%-randVmin: minimum limit for the random values
|
||||
%-randVmax: maximum limit for the random values
|
||||
%-L1: length of the first link of the 2d planar 2 link robot arm
|
||||
%-L2: length of the second link of the 2d planar 2 link robot arm
|
||||
%
|
||||
%
|
||||
% Thomas OLIVE (thomas.olive@ecam.fr)
|
||||
% 18/12/2021
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
addpath("C:/Users/Admin/Documents/ProjectMotionPlanning/motion_planning");
|
||||
S = [2, 0];
|
||||
G = [-2, 0];
|
||||
randVmin = -180;
|
||||
randVmax = 180;
|
||||
L1 = 2;
|
||||
L2 = 1;
|
||||
endfunction
|
||||
Loading…
Reference in New Issue