BinPicking/vision.py

404 lines
15 KiB
Python

import numpy as np
import cv2 as cv
import glob
import os
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def find_camera(find_flag):
if find_flag:
cam_available = []
for i in range(10): # Try indices from 0 to 9
cap = cv.VideoCapture(i)
if cap.isOpened():
print(f"Camera found at index {i}")
cam_available.append(i)
cap.release()
if len(cam_available) > 2:
break
if len(cam_available) > 2 and cam_available[0] == 0:
cam1 = cam_available[1]
cam2 = cam_available[2]
else:
cam1 = cam_available[0]
cam2 = cam_available[1]
else:
cam1 = 1
cam2 = 0
print(f"Cameras number used : {cam1} & {cam2}")
return cam1, cam2
def img_capture(camera_num):
# Create a directory to save captured images
output_dir = f"camera{camera_num}_images"
os.makedirs(output_dir, exist_ok=True)
# Initialize the camera
cap = cv.VideoCapture(camera_num)
# Check if the camera is opened successfully
if not cap.isOpened():
print(f"Error: Could not open camera {camera_num}")
exit()
i = 0
# Capture and save 12 images
while i < 15:
# Capture a frame from the camera
ret, frame = cap.read()
# Check if the frame is captured successfully
if not ret:
print("Error: Could not read frame")
break
# Display the captured image
cv.imshow('Capture Image', frame)
# Save the captured image if the 's' key is pressed
key = cv.waitKey(5) & 0xFF
if key == ord('s'):
img_path = os.path.join(output_dir, f'image_{i+1}.jpg')
cv.imwrite(img_path, frame)
print(f"Image {i+1} saved: {img_path}")
i += 1
# If 'q' key is pressed, exit the loop
elif key == ord('q'): break
# Release the camera and close all OpenCV windows
cap.release()
cv.destroyAllWindows()
print("Image capture complete.")
return
def single_calibration(camera_num, img_cap):
if img_cap: img_capture(camera_num)
# Termination criteria
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Prepare object points, assuming a chessboard with 9 by 6 squares of 30mm
square_size = 30 # in millimeters
row = 8
col = 5
objp = np.zeros((row * col, 3), np.float32)
objp[:, :2] = np.mgrid[0:row, 0:col].T.reshape(-1, 2) * square_size
# Arrays to store object points and image points from all the images.
objpoints = [] # 3D point in real-world space
imgpoints = [] # 2D points in image plane.
images = glob.glob(f'camera{camera_num}_images/*.jpg')
for frame in images:
img = cv.imread(frame)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv.findChessboardCorners(gray, (row, col), None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
corners2 = cv.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners2)
# Draw and display the corners
cv.drawChessboardCorners(img, (row, col), corners2, ret)
cv.imshow('img', img)
cv.waitKey(1)
cv.destroyAllWindows()
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, (gray.shape[1], gray.shape[0]), None, None)
print(mtx, dist)
return mtx, dist
def stereo_capture(mtx1, dist1, mtx2, dist2):
# Open two video capture objects for each camera
cap_left = cv.VideoCapture(cam1) # Adjust the index if needed
cap_right = cv.VideoCapture(cam2) # Adjust the index if needed
# Check if the cameras opened successfully
if not cap_left.isOpened() or not cap_right.isOpened():
print("Error: Couldn't open one or both cameras.")
exit()
# Create a directory to save images
output_dir = 'stereo_images'
os.makedirs(output_dir, exist_ok=True)
frame_counter = 0
while frame_counter < 15:
# Read frames from both cameras
ret_left, frame_left = cap_left.read()
ret_right, frame_right = cap_right.read()
frame_left = cv.undistort(frame_left, mtx1, dist1)
frame_right = cv.undistort(frame_right, mtx2, dist2)
# Break the loop if either of the cameras fails to read a frame
if not ret_left or not ret_right:
print("Error: Couldn't read frames from one or both cameras.")
break
# Display the frames side by side for stereo effect
stereo_frame = cv.hconcat([frame_left, frame_right])
cv.imshow('Stereo Camera Feed', stereo_frame)
key = cv.waitKey(5) & 0xFF
# Save the captured image if the 's' key is pressed
if key == ord('s'):
# Save the frames from both cameras
frame_counter += 1
img_path_left = os.path.join(output_dir, f'{frame_counter}_left_image.jpg')
img_path_right = os.path.join(output_dir, f'{frame_counter}_right_image.jpg')
cv.imwrite(img_path_left, frame_left)
cv.imwrite(img_path_right, frame_right)
print(f"Image {frame_counter} saved")
# Break the loop if 'q' key is pressed
if key == ord('q'): break
# Release the video capture objects and close the OpenCV window
cap_left.release()
cap_right.release()
cv.destroyAllWindows()
return
def stereo_calibration(mtx1, dist1, mtx2, dist2, frames_folder, stereo_capture_flag):
if stereo_capture_flag: stereo_capture(mtx1, dist1, mtx2, dist2)
# Read the synched frames
images_names = glob.glob(frames_folder)
images_names = sorted(images_names)
c1_images_names = images_names[0::2]
c2_images_names = images_names[1::2]
c1_images = []
c2_images = []
for im1, im2 in zip(c1_images_names, c2_images_names):
_im = cv.imread(im1, 1)
c1_images.append(_im)
_im = cv.imread(im2, 1)
c2_images.append(_im)
#change this if stereo calibration not good.
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.0001)
rows = 5 #number of checkerboard rows.
columns = 8 #number of checkerboard columns.
world_scaling = 30 #change this to the real world square size. Or not.
#coordinates of squares in the checkerboard world space
objp = np.zeros((rows*columns,3), np.float32)
objp[:,:2] = np.mgrid[0:rows,0:columns].T.reshape(-1,2)
objp = world_scaling* objp
#frame dimensions. Frames should be the same size.
width = c1_images[0].shape[1]
height = c1_images[0].shape[0]
#Pixel coordinates of checkerboards
imgpoints_left = [] # 2d points in image plane.
imgpoints_right = []
#coordinates of the checkerboard in checkerboard world space.
objpoints = [] # 3d point in real world space
for frame1, frame2 in zip(c1_images, c2_images):
gray1 = cv.cvtColor(frame1, cv.COLOR_BGR2GRAY)
gray2 = cv.cvtColor(frame2, cv.COLOR_BGR2GRAY)
c_ret1, corners1 = cv.findChessboardCorners(gray1, (rows, columns), None)
c_ret2, corners2 = cv.findChessboardCorners(gray2, (rows, columns), None)
if c_ret1 == True and c_ret2 == True:
corners1 = cv.cornerSubPix(gray1, corners1, (11, 11), (-1, -1), criteria)
corners2 = cv.cornerSubPix(gray2, corners2, (11, 11), (-1, -1), criteria)
cv.drawChessboardCorners(frame1, (rows, columns), corners1, c_ret1)
#cv.imshow('img', frame1)
cv.drawChessboardCorners(frame2, (rows, columns), corners2, c_ret2)
#cv.imshow('img2', frame2)
stereo_chess = cv.hconcat([frame1, frame2])
cv.imshow('stereo', stereo_chess)
cv.waitKey(1)
objpoints.append(objp)
imgpoints_left.append(corners1)
imgpoints_right.append(corners2)
stereocalibration_flags = cv.CALIB_FIX_INTRINSIC
ret, CM1, dist1_bis, CM2, dist2_bis, R, T, E, F = cv.stereoCalibrate(objpoints, imgpoints_left, imgpoints_right, mtx1, dist1, mtx2, dist2, (width, height), criteria = criteria, flags = stereocalibration_flags)
cv.destroyAllWindows()
print(R, T)
return R, T
def cub_cordinate(cam1, cam2, mtx1, dist1, mtx2, dist2, R, T):
cap1 = cv.VideoCapture(cam1)
cap2 = cv.VideoCapture(cam2)
while True:
# Capture stereo images
ret1, frame1 = cap1.read()
ret2, frame2 = cap2.read()
if not ret1 and not ret2 : break
frame1 = cv.undistort(frame1, mtx1, dist1)
frame2 = cv.undistort(frame2, mtx2, dist2)
# Detect red cube in both images
point1 = detect_cube(frame1, False)
point2 = detect_cube(frame2, False)
"""
point1 = np.array(point1)
point2 = np.array(point2)
#RT matrix for C1 is identity.
RT1 = np.concatenate([np.eye(3), [[0],[0],[0]]], axis = -1)
P1 = mtx1 @ RT1 #projection matrix for C1
#RT matrix for C2 is the R and T obtained from stereo calibration.
RT2 = np.concatenate([R, T], axis = -1)
P2 = mtx2 @ RT2 #projection matrix for C2
# Call the triangulatePoints function
points3d_homogeneous = cv.triangulatePoints(P1, P2, point1, point2)
# Convert homogeneous coordinates to Euclidean coordinates
points3d_homogeneous /= points3d_homogeneous[3]
# Extract the 3D points from the homogeneous coordinates
points3d = points3d_homogeneous[:3]
print(points3d_homogeneous)"""
#cal_point2 = project_point_to_camera2(point1, mtx1, R, T, mtx2)
transform = np.vstack((np.hstack((R, T)), [0, 0, 0, 1]))
point_homogeneous = np.array([point1[0], point1[1], 1, 1])
cal_point1_homogeneous = np.dot(transform, point_homogeneous)
cal_point1 = cal_point1_homogeneous[:2] / cal_point1_homogeneous[3]
cal_point1_x, cal_point1_y = cal_point1
cv.circle(frame1, (int(point1[0]), int(point1[1])), 2, (0, 0, 255), -1)
cv.circle(frame2, (int(point2[0]), int(point2[1])), 2, (0, 0, 255), -1)
cv.circle(frame2, (int(cal_point1_x), int(cal_point1_y)), 2, (255, 0, 0), -1)
print(point2, cal_point1)
stereo_frame = cv.hconcat([frame1, frame2])
cv.imshow('Stereo Frames', stereo_frame)
cv.waitKey(1)
# Break the loop on 'q' key press
if cv.waitKey(1) & 0xFF == ord('q'): break
# Release video capture and close windows
cap1.release()
cap2.release()
cv.destroyAllWindows()
def detect_cube(image, show_flag):
# Convert image to HSV color space
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
# Define lower and upper bounds for red color in HSV
# Red range
#lower = np.array([0, 100, 100])
#upper = np.array([5, 255, 255])
# Yellow range
#lower = np.array([25, 100, 100])
#upper = np.array([35, 255, 255])
# Green range
lower = np.array([40, 50, 50])
upper = np.array([75, 255, 255])
# Blue range
#lower = np.array([100, 100, 100])
#upper = np.array([110, 255, 255])
# Threshold the HSV image to get only red colors
mask = cv.inRange(hsv, lower, upper)
# Find non-zero pixel coordinates
non_zero_pixels = cv.findNonZero(mask)
# Check if non-zero pixels are found
if non_zero_pixels is not None:
# Calculate the average position and extract x and y coordinates of the average position
average_position = np.mean(non_zero_pixels, axis=0)
avg_x, avg_y = average_position[0]
else: avg_x, avg_y = 0, 0
if show_flag :
# Apply the mask to the original image
masked_image = cv.bitwise_and(image, image, mask=mask)
cv.circle(masked_image, (int(avg_x), int(avg_y)), 2, (0, 0, 255), -1)
cv.imshow('Remaining Image', masked_image)
cv.waitKey(1)
if 0: # Calculate the average value for each channel (Hue, Saturation, Value) across non-zero pixels
non_zero_indices = np.nonzero(mask)
non_zero_pixel_values = hsv[non_zero_indices]
avg = np.mean(non_zero_pixel_values, axis=0)
print(avg)
return (avg_x, avg_y)
def triangulate(mtx1, mtx2, R, T):
uvs1 = [[458, 86]]
uvs2 = [[540, 311]]
uvs1 = np.array(uvs1)
uvs2 = np.array(uvs2)
#RT matrix for C1 is identity.
RT1 = np.concatenate([np.eye(3), [[0],[0],[0]]], axis = -1)
P1 = mtx1 @ RT1 #projection matrix for C1
#RT matrix for C2 is the R and T obtained from stereo calibration.
RT2 = np.concatenate([R, T], axis = -1)
P2 = mtx2 @ RT2 #projection matrix for C2
def project_point_to_camera2(point_cam1, mtx1, R, T, mtx2):
# Step 1: Convert point coordinates to world coordinates in camera 1
point_world = np.dot(np.linalg.inv(mtx1), np.append(point_cam1, 1))
# Step 2: Transform world coordinates to camera 2 coordinate system
point_world_cam2 = np.dot(R, point_world) + T
# Step 3: Project world coordinates onto image plane of camera 2
point_cam2_homogeneous = np.dot(mtx2, point_world_cam2)
point_cam2_homogeneous /= point_cam2_homogeneous[2] # Convert to homogeneous coordinates
point_cam2 = point_cam2_homogeneous[:2] # Extract (x, y) coordinates
return point_cam2
def find_3d_position(mtx1, dist1, mtx2, dist2, R, T):
cap1 = cv.VideoCapture(cam1)
cap2 = cv.VideoCapture(cam2)
while True:
# Capture stereo images
ret1, frame1 = cap1.read()
ret2, frame2 = cap2.read()
if not ret1 and not ret2 : break
frame1 = cv.undistort(frame1, mtx1, dist1)
frame2 = cv.undistort(frame2, mtx2, dist2)
# Detect red cube in both images
point_left = detect_cube(frame1, True)
point_right = detect_cube(frame2, True)
# Convert 2D points to homogeneous coordinates
point_left = np.array([point_left[0], point_left[1]])
point_right = np.array([point_right[0], point_right[1]])
# Triangulate 3D point
P1 = np.hstack((np.eye(3), np.zeros((3, 1))))
P2 = np.hstack((R, T))
print(point_left.T, point_right.T)
points_4d = cv.triangulatePoints(P1, P2, point_left.T, point_right.T)
# Convert homogeneous coordinates to Cartesian coordinates
points_3d = points_4d[:3] / points_4d[3]
cv.circle(frame1, (int(point_left[0]), int(point_left[1])), 2, (0, 0, 255), -1)
cv.circle(frame2, (int(point_right[0]), int(point_right[1])), 2, (0, 0, 255), -1)
print(points_3d)
stereo_frame = cv.hconcat([frame1, frame2])
cv.imshow('Stereo Frames', stereo_frame)
cv.waitKey(500)
return
cam1, cam2 = find_camera(find_flag = False)
mtx1, dist1 = single_calibration(camera_num = cam1, img_cap = False)
mtx2, dist2 = single_calibration(camera_num = cam2, img_cap = False)
R, T = stereo_calibration(mtx1, dist1, mtx2, dist2, 'stereo_images/*', stereo_capture_flag = False)
#cub_cordinate(cam1, cam2, mtx1, dist1, mtx2, dist2, R, T)
find_3d_position(mtx1, dist1, mtx2, dist2, R, T)
print("$$$ Code Done $$$")