#include "opencv2/opencv.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" const int FPS = 15; bool isDiscardData = true; int countDiscard = 0; const int DISCARD_DURATION = 5; const int BUFFER_DURATION = 30 ; const int I = 1; bool isBufferFull = false; int sampleIdBuffer = 0; std::vector greenFFTModule; template cv::Mat plotGraph(std::vector& vals, int YRange[2]) { auto it = minmax_element(vals.begin(), vals.end()); float scale = 1./ceil(*it.second - *it.first); float bias = *it.first; int rows = YRange[1] - YRange[0] + 1; cv::Mat image = 255*cv::Mat::ones( rows, vals.size(), CV_8UC3 ); image.setTo(255); for (int i = 0; i < (int)vals.size()-1; i++) { cv::line(image, cv::Point(i, rows - 1 - (vals[i] - bias)*scale*YRange[1]), cv::Point(i+1, rows - 1 - (vals[i+1] - bias)*scale*YRange[1]), cv::Scalar(255, 0, 0), 1); } return image; } int main() { cv::VideoCapture cap; cap.open(0); //If Haard Cascade not found: error cv::CascadeClassifier faceDetector; if( !faceDetector.load("./haarcascade_frontalface_alt.xml")) { std::cerr << "[ERROR] Unable to load face cascade" << std::endl; return -1; }; cv::Rect foreheadROI; if (!cap.isOpened()) { std::cerr << "[ERROR] Unable to open camera!" << std::endl; return -2; } while (true) { if (isDiscardData) { countDiscard++; if (countDiscard == DISCARD_DURATION*FPS) isDiscardData = false; } else { // create a matrix to store the image from the cam cv::Mat frame; // wait for a new frame from camera and store it into 'frame' cap.read(frame); // check if we succeeded if (frame.empty()) { std::cerr << "[ERROR] blank frame grabbed" << std::endl; break; } //Draw Rectangle around the face std::vector faceRectangles; faceDetector.detectMultiScale(frame, faceRectangles, 1.1, 3, 0,cv::Size(20, 20)); if (faceRectangles.size() > 0) { foreheadROI = faceRectangles[0]; foreheadROI.height *= 0.3; cv::rectangle(frame, faceRectangles[0], cv::Scalar(0, 0, 255), 1, 1, 0); cv::rectangle(frame, foreheadROI, cv::Scalar(255, 0, 0), 1, 1, 0); cv::Mat frame_forehead = frame(foreheadROI); cv::Scalar avg_forehead = mean(frame_forehead); // cv::Mat greenSignal(1, FPS*BUFFER_DURATION, CV_64F); if (!isBufferFull) { greenSignal.at(0, sampleIdBuffer) = avg_forehead[1] ; sampleIdBuffer++; if (sampleIdBuffer == FPS*BUFFER_DURATION) { isBufferFull = true; } } else { std::vector greenSignalNormalized; cv::Scalar mean, stddev; cv::meanStdDev(greenSignal, mean, stddev); for (int l_sample=0; l_sample < FPS*BUFFER_DURATION; l_sample++) { greenSignalNormalized.push_back((greenSignal.at(0, l_sample) - mean[0])/stddev[0]); } int range[2] = {0, (int)(FPS*BUFFER_DURATION)}; cv::Mat greenFFT; /// cv::dft(greenSignalNormalized,greenFFT,cv::DFT_ROWS|cv::DFT_COMPLEX_OUTPUT); cv::Mat planes[] = {cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F), cv::Mat::zeros(greenSignalNormalized.size(),1, CV_64F)}; cv::split(greenFFT, planes); //planes[0] = Re(DFT(I), //planes[1] = Im(DFT(I)) greenFFTModule.clear(); for (int l=0; l < planes[1].cols; l++) { double moduleFFT = pow(planes[1].at(0,l),2) + pow(planes[0].at(0,l),2); greenFFTModule.push_back(sqrt(moduleFFT)); } // display green FFT cv::imshow("FFT module green", plotGraph(greenFFTModule, range)); } } cv::imshow("Your Face PLS", frame); if (cv::waitKey(1000.0/FPS) >= 0) break; } } return 0; }