72 lines
2.2 KiB
Matlab
72 lines
2.2 KiB
Matlab
function [distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(nbNodes, visibilityGraph)
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%function [distanceToNode, parentOfNode, nodeTrajectory] = dijkstra(nbNodes, visibilityGraph)
|
|
%
|
|
% Task: Perform the Dijkstra algorithm on a given visibility graph
|
|
%
|
|
% Inputs:
|
|
% -nbNodes: number of nodes of the graph excluding the starting and goal points
|
|
% -visibilityGraph: a matrix containing the distance between connected nodes
|
|
% (NaN refers to not connected nodes)
|
|
% The matrix has a size of (nbNodes+2)x(nbNodes+2)
|
|
% The first row/col corresponds to the Starting point, the last row/col to the Goal point.
|
|
%
|
|
% Outputs:
|
|
% - distanceToNode: distance between the current node and its parent
|
|
% - parentOfNode: index of the parent node for each node
|
|
% - nodeTrajectory: best trajectory
|
|
%
|
|
% Guillaume Gibert (guillaume.gibert@ecam.fr)
|
|
% 17/03/2021
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
constantLargeDitance=10000;
|
|
|
|
visitedNodes = zeros(1, nbNodes+2);
|
|
distanceToNode = constantLargeDitance*ones(1, nbNodes+2);
|
|
distanceToNode(1) = 0;
|
|
parentOfNode = zeros(1, nbNodes+2);
|
|
|
|
fprintf('##Starting Dijkstra''s algorithm...\n')
|
|
|
|
while (sum(visitedNodes(:)==0))
|
|
thresholdDistance = constantLargeDitance+1;
|
|
for l_node=1:nbNodes+2
|
|
%l_node
|
|
if (visitedNodes(l_node)==0 && distanceToNode(l_node) < thresholdDistance)
|
|
minIndex = l_node;
|
|
thresholdDistance = distanceToNode(l_node);
|
|
end
|
|
end
|
|
|
|
fprintf('-->Visiting N%d\n', minIndex-1)
|
|
|
|
visitedNodes(minIndex) = 1;
|
|
for l_node=1:nbNodes+2
|
|
%l_node
|
|
if (l_node~=minIndex && ~isnan(visibilityGraph(minIndex, l_node)))
|
|
distance = distanceToNode(minIndex) + visibilityGraph(minIndex,l_node);
|
|
if (distance < distanceToNode(l_node))
|
|
distanceToNode(l_node) = distance;
|
|
parentOfNode(l_node) = minIndex;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
fprintf('##Dijkstra''s algorithm is done!\n')
|
|
fprintf('##Results\n')
|
|
fprintf('Minimal distance to target: %d\n', distanceToNode(nbNodes+2))
|
|
nodeIndex = nbNodes+2;
|
|
nodeTrajectory = [];
|
|
while(nodeIndex~=1)
|
|
nodeIndex = parentOfNode(nodeIndex);
|
|
nodeTrajectory = [nodeTrajectory nodeIndex];
|
|
end
|
|
fprintf('S-->');
|
|
for l_node=2:length(nodeTrajectory)
|
|
fprintf('N%d-->', nodeTrajectory(length(nodeTrajectory)-(l_node-1))-1);
|
|
end
|
|
fprintf('G\n');
|
|
fprintf('########\n');
|
|
|