heatrateestimation/heartRateEstimation.m

106 lines
2.2 KiB
Matlab

%hr = heartRateEstimation(imgDirectory, fps, windowDuration, windowShift)
%%%%%%%%%%%%%%%%%
% hr = heartRateEstimation(imgDirectory, fps, windowDuration, windowShift)
%
% Task:
%
% Inputs:
% -imgDirectory
% -fps
% -windowDuration
% -windowShift
%
% Output:
% -hr:
%
% Author: Thomas Périn
% Date: 17/02/2023
%
% Note: images were extracted with ffmpeg -i "video.mkv" ../img/gg_%04d.png
%%%%%%%%%%%%%%%%%
clc
clear all
%temp var
%imgDirectory = 'img';
fps = 15;
windowDuration = 30;
windowShift = 1;
roi = [280 580 600 850];
% global
redChannel = [];
greenChannel = [];
blueChannel = [];
%list the images
%listImg = dir([imgDirectory '/*.png']);
listImg = dir(['*.png']);
for l_img=1:windowDuration*fps
% load the current image
%image_original = imread([imgDirectory '/' listImg(l_img).name]);
image_original = imread([listImg(l_img).name]);
%image(image_original);
%imshow([listImg(l_img).name])
% crop the current image around the face
image_face = image_original(roi(1):roi(2), roi(3):roi(4), :);
%image(image_face);
% spatial average for r, g, b channels
r_mean = mean(mean(image_face(:,:,1)));
g_mean = mean(mean(image_face(:,:,2)));
b_mean = mean(mean(image_face(:,:,3)));
% store the current "average" pixel in global arrays
redChannel = [redChannel r_mean];
greenChannel = [greenChannel g_mean];
blueChannel = [blueChannel b_mean];
end
% estimate temporal average and standard deviation
redChannel_avg = mean(redChannel);
redChannel_std = std(redChannel);
greenChannel_avg = mean(greenChannel);
greenChannel_std = std(greenChannel);
blueChannel_avg = mean(blueChannel);
blueChannel_std = std(blueChannel);
% normalize your data
%first define length of our data
L = columns(greenChannel);
for i=1:L
greenChannel_normalized(i) = (greenChannel(i) - greenChannel_avg)/greenChannel_std;
end
greenChannel_fft = fft(greenChannel_normalized);
% power spectrum (https://www.mathworks.com/help/matlab/ref/fft.html)
P2 = abs(greenChannel_fft/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = 15*(0:(L/2))/L;
plot(f,P1)
% find the peak in the range ([0.75 4] Hz)
% max -> value, index
low_index = 0.75*L/15+0.5
high_index = 2*L/15
a = max(P1(low_index:high_index))
heart_rate = f(a)
% convert the index from Hz to bpm
% determine heart rate