Compare commits

...

8 Commits

Author SHA1 Message Date
ros 50d536ddf1 ben comme ça dit dans la branche 2024-04-09 17:34:18 +02:00
Alexandre VEROT 4bdaf47658 Final Version 2024-04-09 16:37:47 +02:00
Maryne DEY 0838689fa3 Moving joystick_ros 2024-03-25 14:08:48 +01:00
Maryne DEY a5d6d8c183 Moving joystick_ros to catkin_ws 2024-03-25 14:02:13 +01:00
Lucas MARAIS e643a38f41 joystick control through IK 2024-03-25 00:18:01 +01:00
Maryne DEY e20ac73682 Sending the values of the serial port on the serial_data topic 2024-03-18 10:04:38 +01:00
Maryne DEY 14c0184626 Changed the writing on the serial port 2024-03-18 09:58:51 +01:00
Maryne DEY 9858e1056b Implementation of a joystick 2024-03-18 09:08:19 +01:00
27 changed files with 1462 additions and 255 deletions

View File

@ -1 +0,0 @@
/opt/ros/noetic/share/catkin/cmake/toplevel.cmake

View File

@ -8,9 +8,6 @@
<!-- Ball Tracking Node --> <!-- Ball Tracking Node -->
<node name="tracker_aruco" pkg="ball_tracking" type="tracker_aruco.py" output="screen" /> <node name="tracker_aruco" pkg="ball_tracking" type="tracker_aruco.py" output="screen" />
<!-- Ball Tracking Node -->
<node name="tracker_aruco_idk" pkg="ball_tracking" type="tracker_aruco_idk.py" output="screen" />
<!-- Ball Tracking Node --> <!-- Ball Tracking Node -->
<node name="paddle_action" pkg="ball_tracking" type="paddle_action.py" output="screen" /> <node name="paddle_action" pkg="ball_tracking" type="paddle_action.py" output="screen" />
</launch> </launch>

View File

@ -0,0 +1,20 @@
<launch>
<!-- ArUco Tag Detection Node -->
<node name="camera_publisher" pkg="ball_tracking" type="camera_publisher.py" output="screen" />
<!-- ArUco Tag Detection Node -->
<node name="aruco_area" pkg="ball_tracking" type="aruco_area.py" output="screen" />
<!-- Ball Tracking Node -->
<node name="tracker_aruco" pkg="ball_tracking" type="tracker_aruco.py" output="screen" />
<!-- Ball Tracking Node -->
<node name="paddle_action" pkg="ball_tracking" type="paddle_action.py" output="screen" />
<!-- Ball Tracking Node -->
<node name="ball_prediction" pkg="ball_tracking" type="ball_prediction.py" output="screen" />
<!-- Ball Tracking Node -->
<node name="prediction_monitor" pkg="ball_tracking" type="prediction_monitor.py" output="screen" />
</launch>

View File

@ -25,17 +25,51 @@ def find_polygon_centroid(centers):
centroid_y = np.mean([center[1] for center in centers], axis=0) centroid_y = np.mean([center[1] for center in centers], axis=0)
return centroid_x, centroid_y return centroid_x, centroid_y
def sort_points_clockwise(centers):
"""Sort the points in a clockwise order based on their angles relative to the centroid."""
if not centers:
return []
centroid = np.mean(centers, axis=0)
def angle_from_centroid(center):
return np.arctan2(center[1] - centroid[1], center[0] - centroid[0])
sorted_centers = sorted(centers, key=angle_from_centroid)
return sorted_centers
def calculate_side_averages(sorted_centers):
"""Calculate the average of the x and y coordinates for all sides."""
# Assuming the sorted centers are in clockwise order: top-left, top-right, bottom-right, bottom-left
right_average = np.mean([sorted_centers[1], sorted_centers[2]], axis=0)
left_average = np.mean([sorted_centers[0], sorted_centers[3]], axis=0)
top_average = np.mean([sorted_centers[0], sorted_centers[1]], axis=0)
bottom_average = np.mean([sorted_centers[2], sorted_centers[3]], axis=0)
return left_average, right_average, top_average, bottom_average
def publish_side_points(left_average, right_average, top_average, bottom_average):
"""Publish the average points for all sides with specified Z coordinates."""
left_point = Point(x=left_average[0], y=left_average[1], z=1) # Z=1 for left
right_point = Point(x=right_average[0], y=right_average[1], z=2) # Z=2 for right
top_point = Point(x=top_average[0], y=top_average[1], z=3) # Z=3 for top
bottom_point = Point(x=bottom_average[0], y=bottom_average[1], z=4) # Z=4 for bottom
side_pub.publish(left_point)
side_pub.publish(right_point)
side_pub.publish(top_point)
side_pub.publish(bottom_point)
sizePoint = Point(x=abs(bottom_average[0]-top_average[0]), y=abs(left_average[1]-right_average[1]), z=4)
size_terrain.publish(sizePoint)
def image_callback(msg): def image_callback(msg):
global pub, marker_pub global pub, marker_pub, side_pub
bridge = CvBridge() bridge = CvBridge()
frame = bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8') frame = bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
corners, ids, rejected = aruco.detectMarkers(gray, arucoDict) corners, ids, rejected = aruco.detectMarkers(gray, arucoDict)
if ids is not None and len(ids) == 4: # Ensure exactly four markers are detected for a quadrilateral if ids is not None and len(ids) >= 4: # Adjust this condition based on your setup
marker_centers = calculate_marker_centers(corners) marker_centers = calculate_marker_centers(corners)
centerX, centerY = find_polygon_centroid(marker_centers) sorted_centers = sort_points_clockwise(marker_centers)
centerX, centerY = find_polygon_centroid(sorted_centers)
if centerX is not None and centerY is not None: if centerX is not None and centerY is not None:
origin = Point() origin = Point()
@ -44,49 +78,53 @@ def image_callback(msg):
origin.z = 0 origin.z = 0
pub.publish(origin) pub.publish(origin)
# Publish the centers of the markers as the midpoints of the polygon sides left_average, right_average, top_average, bottom_average = calculate_side_averages(sorted_centers)
publish_side_points(left_average - np.array([centerX, centerY]),
right_average - np.array([centerX, centerY]),
top_average - np.array([centerX, centerY]),
bottom_average - np.array([centerX, centerY]))
# Publish the edges of the polygon
marker = Marker() marker = Marker()
marker.header.frame_id = "camera_link" # Adjust if necessary marker.header.frame_id = "camera_link"
marker.header.stamp = rospy.Time.now() marker.header.stamp = rospy.Time.now()
marker.ns = "polygon_sides_midpoints" marker.ns = "polygon_edges"
marker.id = 0 marker.id = 0
marker.type = Marker.LINE_STRIP marker.type = Marker.LINE_STRIP
marker.action = Marker.ADD marker.action = Marker.ADD
marker.scale.x = 0.02 # Line width marker.scale.x = 0.02
marker.color = ColorRGBA(1.0, 0.0, 0.0, 1.0) # Color marker.color = ColorRGBA(1.0, 0.0, 0.0, 1.0)
marker.lifetime = rospy.Duration() marker.lifetime = rospy.Duration()
for center in marker_centers: for center in sorted_centers:
p = Point() p = Point()
p.x, p.y = center p.x, p.y = center
p.z = 0
marker.points.append(p) marker.points.append(p)
if sorted_centers:
# Close the polygon by adding the first point again to connect the last and first midpoints
if marker_centers:
p = Point() p = Point()
p.x, p.y = marker_centers[0] p.x, p.y = sorted_centers[0]
p.z = 0
marker.points.append(p) marker.points.append(p)
marker_pub.publish(marker) marker_pub.publish(marker)
# Optional: Visualize the centroid and detected markers #cv2.circle(frame, (int(centerX), int(centerY)), 5, (0, 255, 0), -1)
cv2.circle(frame, (int(centerX), int(centerY)), 5, (0, 255, 0), -1) #aruco.drawDetectedMarkers(frame, corners, ids)
aruco.drawDetectedMarkers(frame, corners, ids)
# Display the frame #cv2.imshow('Frame', frame)
cv2.imshow('Frame', frame) #cv2.waitKey(1)
cv2.waitKey(1)
def main(): def main():
global pub, marker_pub, arucoDict global pub, marker_pub, side_pub, arucoDict, size_terrain
rospy.init_node('aruco_origin_publisher', anonymous=True) rospy.init_node('aruco_origin_publisher', anonymous=True)
pub = rospy.Publisher('/aruco_origin', Point, queue_size=10) pub = rospy.Publisher('/aruco_origin', Point, queue_size=10)
marker_pub = rospy.Publisher('/visualization_marker', Marker, queue_size=10) marker_pub = rospy.Publisher('/polygon_edges', Marker, queue_size=10)
side_pub = rospy.Publisher('/LR_edge_centers', Point, queue_size=10)
# Initialize the ArUco dictionary size_terrain = rospy.Publisher('/width_length', Point, queue_size=10)
arucoDict = aruco.getPredefinedDictionary(aruco.DICT_4X4_50) arucoDict = aruco.getPredefinedDictionary(aruco.DICT_4X4_50)
# Subscribe to the camera_image topic
rospy.Subscriber('camera_image', Image, image_callback) rospy.Subscriber('camera_image', Image, image_callback)
rospy.spin() rospy.spin()

View File

@ -0,0 +1,58 @@
#!/usr/bin/env python3
import rospy
from geometry_msgs.msg import Point
from std_msgs.msg import Header
import numpy as np
class BallMovementPredictor:
def __init__(self):
rospy.init_node('ball_movement_predictor', anonymous=True)
self.ball_positions = []
self.forecast_length = 5 # Predict the ball's position 5 steps into the future
# Subscriber to the ball's current position
self.ball_sub = rospy.Subscriber('/ball_coordinates', Point, self.ball_callback)
# Publisher for the ball's forecasted future position
self.forecast_pub = rospy.Publisher('/ball_forecast', Point, queue_size=10)
def ball_callback(self, msg):
# Update the list of recent ball positions
self.ball_positions.append((msg.x, msg.y))
# Keep only the last N positions for prediction
if len(self.ball_positions) > 5:
self.ball_positions.pop(0)
# Predict the ball's future position and publish it
forecasted_position = self.predict_future_position()
if forecasted_position is not None:
forecast_msg = Point(x=forecasted_position[0], y=forecasted_position[1], z=0)
self.forecast_pub.publish(forecast_msg)
def predict_future_position(self):
if len(self.ball_positions) < 2:
return None # Not enough data to predict
# Simple linear prediction based on the last two positions
x_positions, y_positions = zip(*self.ball_positions)
x_velocity = x_positions[-1] - x_positions[-2]
y_velocity = y_positions[-1] - y_positions[-2]
forecasted_x = x_positions[-1] + x_velocity * self.forecast_length
forecasted_y = y_positions[-1] + y_velocity * self.forecast_length
return (forecasted_x, forecasted_y)
def run(self):
rospy.spin()
if __name__ == '__main__':
try:
predictor = BallMovementPredictor()
predictor.run()
except rospy.ROSInterruptException:
pass

View File

@ -0,0 +1,25 @@
#!/usr/bin/env python3
import rospy
from geometry_msgs.msg import Point
def callback(data):
"""Callback function that is called when a message is received on the /trigger topic."""
rospy.loginfo(f"Received point: (x: {data.x}, y: {data.y}, z: {data.z})")
def listener():
"""Sets up the subscriber node."""
# Initialize the node with the name 'point_subscriber'
rospy.init_node('PONG_PADDLES', anonymous=False)
# Subscribe to the '/trigger' topic with the callback function
rospy.Subscriber("/trigger", Point, callback)
# Keep the program alive until it is stopped with Ctrl+C
rospy.spin()
if __name__ == '__main__':
try:
listener()
except rospy.ROSInterruptException:
pass

View File

@ -2,7 +2,6 @@
import rospy import rospy
from geometry_msgs.msg import Point from geometry_msgs.msg import Point
from std_msgs.msg import Int32 # This import is no longer needed, but it can be kept if used elsewhere
class BallEdgeTrigger: class BallEdgeTrigger:
def __init__(self): def __init__(self):
@ -12,8 +11,10 @@ class BallEdgeTrigger:
self.ball_sub = rospy.Subscriber('/ball_coordinates', Point, self.ball_callback) self.ball_sub = rospy.Subscriber('/ball_coordinates', Point, self.ball_callback)
self.edge_sub = rospy.Subscriber('/LR_edge_centers', Point, self.edge_callback) self.edge_sub = rospy.Subscriber('/LR_edge_centers', Point, self.edge_callback)
# Publisher # Publishers
self.trigger_pub = rospy.Publisher('/trigger', Point, queue_size=10) # Change to Point self.trigger_pub = rospy.Publisher('/trigger', Point, queue_size=10)
# Additional publisher for /trigger_mm with modified coordinates
self.trigger_mm_pub = rospy.Publisher('/trigger_mm', Point, queue_size=10)
# To store edge centers # To store edge centers
self.edge_centers = [] # List to hold edge center points self.edge_centers = [] # List to hold edge center points
@ -25,14 +26,21 @@ class BallEdgeTrigger:
def ball_callback(self, msg): def ball_callback(self, msg):
# Initialize a Point message with default values (Z=0 means no trigger) # Initialize a Point message with default values (Z=0 means no trigger)
trigger_point = Point(x=msg.x, y=msg.y, z=0) trigger_point = Point(x=msg.x, y=msg.y, z=0)
# Prepare the modified Point message for /trigger_mm
trigger_mm_point = Point(x=msg.x * 0.04, y=msg.y * 0.028, z=0)
for edge in self.edge_centers: for edge in self.edge_centers:
if abs(msg.x - edge.x) <= 20: if abs(msg.x - edge.x) <= 20:
# Set Z to 1 if the ball is approaching the left edge (Z=1), or to 2 if approaching the right (Z=2) # Set Z to 1 if the ball is approaching the left edge (Z=1), or to 2 if approaching the right (Z=2)
trigger_point.z = edge.z trigger_point.z = edge.z
# Apply the same Z logic to the modified point for /trigger_mm
trigger_mm_point.z = edge.z
break # Stop checking after the first trigger condition is met break # Stop checking after the first trigger condition is met
# Publish the trigger Point message # Publish the original trigger Point message
self.trigger_pub.publish(trigger_point) self.trigger_pub.publish(trigger_point)
# Publish the modified trigger Point message on /trigger_mm
self.trigger_mm_pub.publish(trigger_mm_point)
def run(self): def run(self):
rospy.spin() rospy.spin()

View File

@ -35,7 +35,7 @@ class ArucoVisualizer:
try: try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
self.current_frame = cv_image self.current_frame = cv_image
self.draw_visuals() #self.draw_visuals()
except CvBridgeError as e: except CvBridgeError as e:
print(e) print(e)

View File

@ -0,0 +1,54 @@
#!/usr/bin/env python3
import rospy
import cv2
from cv_bridge import CvBridge
from sensor_msgs.msg import Image
from geometry_msgs.msg import Point
class BallPredictionVisualizer:
def __init__(self):
rospy.init_node('ball_prediction_visualizer', anonymous=True)
self.bridge = CvBridge()
self.forecasted_position_aruco = None
self.aruco_origin = None
self.image_sub = rospy.Subscriber('/camera_image', Image, self.image_callback)
self.forecast_sub = rospy.Subscriber('/ball_forecast', Point, self.forecast_callback)
self.origin_sub = rospy.Subscriber('/aruco_origin', Point, self.origin_callback)
def forecast_callback(self, msg):
self.forecasted_position_aruco = (int(msg.x), int(msg.y))
def origin_callback(self, msg):
self.aruco_origin = (int(msg.x), int(msg.y))
def image_callback(self, msg):
#cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8")
if self.aruco_origin:
# Draw the ArUco origin for verification
#cv2.circle(cv_image, self.aruco_origin, 10, (0, 255, 0), -1) # Green dot for the origin
if self.forecasted_position_aruco and self.aruco_origin:
# Adjust for the origin and possibly invert the y-axis
adjusted_position = (
self.forecasted_position_aruco[0] + self.aruco_origin[0],
self.forecasted_position_aruco[1] + self.aruco_origin[1]
)
#cv2.circle(cv_image, adjusted_position, 10, (0, 0, 255), -1) # Red dot for the predicted position
#cv2.imshow("Ball Prediction", cv_image)
#cv2.waitKey(1)
def run(self):
rospy.spin()
if __name__ == '__main__':
try:
visualizer = BallPredictionVisualizer()
visualizer.run()
except rospy.ROSInterruptException:
cv2.destroyAllWindows()

View File

@ -50,15 +50,18 @@ def image_callback(msg):
adjusted_x = x - origin[0] adjusted_x = x - origin[0]
adjusted_y = y - origin[1] adjusted_y = y - origin[1]
ball_point = Point(x=adjusted_x, y=adjusted_y, z=0) ball_point = Point(x=adjusted_x, y=adjusted_y, z=0)
ball_point_mm = Point(x=adjusted_x*0.04, y=adjusted_y*0.028, z=0)
else: else:
ball_point = Point(x=x, y=y, z=0) ball_point = Point(x=x, y=y, z=0)
ball_point_mm = Point(x=x*0.04, y=y*0.028, z=0)
coord_pub.publish(ball_point) coord_pub.publish(ball_point)
coord_pub_mm.publish(ball_point_mm)
# Display the frames for debugging # Display the frames for debugging
cv2.imshow('frame', frame) #cv2.imshow('frame', frame)
# cv2.imshow('mask', mask) # cv2.imshow('mask', mask)
# cv2.imshow('res', res) # cv2.imshow('res', res)
cv2.waitKey(1) #cv2.waitKey(1)
origin = None # Global variable to hold the origin origin = None # Global variable to hold the origin
@ -71,6 +74,7 @@ rospy.Subscriber('camera_image', Image, image_callback)
# ROS Publisher for the ball coordinates # ROS Publisher for the ball coordinates
coord_pub = rospy.Publisher('/ball_coordinates', Point, queue_size=10) coord_pub = rospy.Publisher('/ball_coordinates', Point, queue_size=10)
coord_pub_mm = rospy.Publisher('/ball_coordinates_mm', Point, queue_size=10)
# Trackbars setup for HSV thresholding # Trackbars setup for HSV thresholding
cv2.namedWindow('settings') cv2.namedWindow('settings')

View File

@ -1,125 +0,0 @@
#!/usr/bin/env python3
import rospy
from geometry_msgs.msg import Point
from sensor_msgs.msg import Image
from visualization_msgs.msg import Marker
from std_msgs.msg import ColorRGBA
import cv2
import cv2.aruco as aruco
import numpy as np
from cv_bridge import CvBridge
def calculate_marker_centers(corners):
"""Calculate the center of each ArUco marker."""
centers = []
for corner in corners:
cx = np.mean([point[0] for point in corner[0]], axis=0)
cy = np.mean([point[1] for point in corner[0]], axis=0)
centers.append((cx, cy))
return centers
def find_polygon_centroid(centers):
"""Calculate the centroid of the polygon formed by the marker centers."""
centroid_x = np.mean([center[0] for center in centers], axis=0)
centroid_y = np.mean([center[1] for center in centers], axis=0)
return centroid_x, centroid_y
def sort_points_clockwise(centers):
"""Sort the points in a clockwise order based on their angles relative to the centroid."""
if not centers:
return []
centroid = np.mean(centers, axis=0)
def angle_from_centroid(center):
return np.arctan2(center[1] - centroid[1], center[0] - centroid[0])
sorted_centers = sorted(centers, key=angle_from_centroid)
return sorted_centers
def calculate_side_averages(sorted_centers):
"""Calculate the average of the x and y coordinates for the left and right sides."""
# Assuming the sorted centers are in clockwise order: top-left, top-right, bottom-right, bottom-left
right_average = np.mean([sorted_centers[1], sorted_centers[2]], axis=0)
left_average = np.mean([sorted_centers[0], sorted_centers[3]], axis=0)
return left_average, right_average
def publish_side_points(left_average, right_average):
"""Publish the average points for the left and right sides with specified Z coordinates."""
left_point = Point(x=left_average[0], y=left_average[1], z=1) # Z=1 for left
right_point = Point(x=right_average[0], y=right_average[1], z=2) # Z=2 for right
side_pub.publish(left_point)
side_pub.publish(right_point)
def image_callback(msg):
global pub, marker_pub, side_pub
bridge = CvBridge()
frame = bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
corners, ids, rejected = aruco.detectMarkers(gray, arucoDict)
if ids is not None and len(ids) >= 4: # Adjust this condition based on your setup
marker_centers = calculate_marker_centers(corners)
sorted_centers = sort_points_clockwise(marker_centers)
centerX, centerY = find_polygon_centroid(sorted_centers)
if centerX is not None and centerY is not None:
origin = Point()
origin.x = centerX
origin.y = centerY
origin.z = 0
pub.publish(origin)
left_average, right_average = calculate_side_averages(sorted_centers)
publish_side_points(left_average - np.array([centerX, centerY]),
right_average - np.array([centerX, centerY]))
# Publish the edges of the polygon
marker = Marker()
marker.header.frame_id = "camera_link"
marker.header.stamp = rospy.Time.now()
marker.ns = "polygon_edges"
marker.id = 0
marker.type = Marker.LINE_STRIP
marker.action = Marker.ADD
marker.scale.x = 0.02
marker.color = ColorRGBA(1.0, 0.0, 0.0, 1.0)
marker.lifetime = rospy.Duration()
for center in sorted_centers:
p = Point()
p.x, p.y = center
p.z = 0
marker.points.append(p)
if sorted_centers:
p = Point()
p.x, p.y = sorted_centers[0]
p.z = 0
marker.points.append(p)
marker_pub.publish(marker)
cv2.circle(frame, (int(centerX), int(centerY)), 5, (0, 255, 0), -1)
aruco.drawDetectedMarkers(frame, corners, ids)
cv2.imshow('Frame', frame)
cv2.waitKey(1)
def main():
global pub, marker_pub, side_pub, arucoDict
rospy.init_node('aruco_origin_publisher', anonymous=True)
pub = rospy.Publisher('/aruco_origin', Point, queue_size=10)
marker_pub = rospy.Publisher('/polygon_edges', Marker, queue_size=10)
side_pub = rospy.Publisher('/LR_edge_centers', Point, queue_size=10)
arucoDict = aruco.getPredefinedDictionary(aruco.DICT_4X4_50)
rospy.Subscriber('camera_image', Image, image_callback)
rospy.spin()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()

View File

@ -1,95 +0,0 @@
#!/usr/bin/env python3
import rospy
from geometry_msgs.msg import Point
import cv2
import numpy as np
def nothing(x):
pass
# Initialize the ROS node
rospy.init_node('ball_tracking_node', anonymous=True)
# Create a ROS publisher for the ball's coordinates
coord_pub = rospy.Publisher('/ball_coordinates', Point, queue_size=10)
# Create a window for the trackbars
cv2.namedWindow('settings')
# Create trackbars for adjusting the HSV range
cv2.createTrackbar('Lower-H', 'settings', 0, 179, nothing)
cv2.createTrackbar('Lower-S', 'settings', 100, 255, nothing)
cv2.createTrackbar('Lower-V', 'settings', 100, 255, nothing)
cv2.createTrackbar('Upper-H', 'settings', 22, 179, nothing)
cv2.createTrackbar('Upper-S', 'settings', 255, 255, nothing)
cv2.createTrackbar('Upper-V', 'settings', 255, 255, nothing)
# Attempt to open the video capture
cap = cv2.VideoCapture(0)
# Check if the camera opened successfully
if not cap.isOpened():
print("Error: Could not open camera.")
exit()
while not rospy.is_shutdown():
# Capture frame-by-frame
ret, frame = cap.read()
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
# Convert the captured frame to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Get the current positions of the trackbars
lh = cv2.getTrackbarPos('Lower-H', 'settings')
ls = cv2.getTrackbarPos('Lower-S', 'settings')
lv = cv2.getTrackbarPos('Lower-V', 'settings')
uh = cv2.getTrackbarPos('Upper-H', 'settings')
us = cv2.getTrackbarPos('Upper-S', 'settings')
uv = cv2.getTrackbarPos('Upper-V', 'settings')
# Define the HSV range for the orange color
lower_orange = np.array([lh, ls, lv])
upper_orange = np.array([uh, us, uv])
# Threshold the HSV image to only get the orange colors
mask = cv2.inRange(hsv, lower_orange, upper_orange)
res = cv2.bitwise_and(frame, frame, mask=mask)
# Find contours in the mask
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
center = None
if contours:
# Find the largest contour in the mask
c = max(contours, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
if radius > 10: # Minimum radius threshold
# Draw the circle and centroid on the frame
cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2)
center = (int(x), int(y))
cv2.circle(frame, center, 5, (0, 0, 255), -1)
# Publish the ball's coordinates
point_msg = Point()
point_msg.x = x
point_msg.y = y
point_msg.z = 0 # Z-coordinate is not applicable here
coord_pub.publish(point_msg)
# Display the original and the result
cv2.imshow('frame', frame)
cv2.imshow('mask', mask)
cv2.imshow('res', res)
if cv2.waitKey(1) & 0xFF == 27: # ESC key to break
break
# When everything done, release the capture and destroy all windows
cap.release()
cv2.destroyAllWindows()
#Minabebis :3

View File

@ -0,0 +1,211 @@
cmake_minimum_required(VERSION 3.0.2)
project(joystick_ros)
## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs
serial
)
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)
## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()
################################################
## Declare ROS messages, services and actions ##
################################################
## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
## * add a build_depend tag for "message_generation"
## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
## * If MSG_DEP_SET isn't empty the following dependency has been pulled in
## but can be declared for certainty nonetheless:
## * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
## * add "message_generation" and every package in MSG_DEP_SET to
## find_package(catkin REQUIRED COMPONENTS ...)
## * add "message_runtime" and every package in MSG_DEP_SET to
## catkin_package(CATKIN_DEPENDS ...)
## * uncomment the add_*_files sections below as needed
## and list every .msg/.srv/.action file to be processed
## * uncomment the generate_messages entry below
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
## Generate messages in the 'msg' folder
# add_message_files(
# FILES
# Message1.msg
# Message2.msg
# )
## Generate services in the 'srv' folder
# add_service_files(
# FILES
# Service1.srv
# Service2.srv
# )
## Generate actions in the 'action' folder
# add_action_files(
# FILES
# Action1.action
# Action2.action
# )
## Generate added messages and services with any dependencies listed here
# generate_messages(
# DEPENDENCIES
# std_msgs
# )
################################################
## Declare ROS dynamic reconfigure parameters ##
################################################
## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
## * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
## * add "dynamic_reconfigure" to
## find_package(catkin REQUIRED COMPONENTS ...)
## * uncomment the "generate_dynamic_reconfigure_options" section below
## and list every .cfg file to be processed
## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
# cfg/DynReconf1.cfg
# cfg/DynReconf2.cfg
# )
###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
# INCLUDE_DIRS include
# LIBRARIES joystick_ros
CATKIN_DEPENDS roscpp rospy std_msgs serial
# DEPENDS system_lib
)
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include
${catkin_INCLUDE_DIRS}
)
## Declare a C++ library
# add_library(${PROJECT_NAME}
# src/${PROJECT_NAME}/joystick_ros.cpp
# )
## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
add_executable(readSerial src/readSerial.cpp)
add_executable(parser src/parser.cpp)
add_executable(position_ctrl src/position_ctrl.cpp)
## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")
## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
target_link_libraries(readSerial ${catkin_LIBRARIES})
target_link_libraries(parser ${catkin_LIBRARIES})
target_link_libraries(position_ctrl ${catkin_LIBRARIES})
## Specify libraries to link a library or executable target against
# target_link_libraries(${PROJECT_NAME}_node
# ${catkin_LIBRARIES}
# )
#############
## Install ##
#############
# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
# scripts/my_python_script
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )
## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
# FILES_MATCHING PATTERN "*.h"
# PATTERN ".svn" EXCLUDE
# )
## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
# # myfile1
# # myfile2
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )
#############
## Testing ##
#############
## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_joystick_ros.cpp)
# if(TARGET ${PROJECT_NAME}-test)
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()
## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

View File

@ -0,0 +1,15 @@
<!-- joystick_ros.launch -->
<launch>
<!-- Launch joystick_ros -->
<!--include file="$(find joystick_ros)/joystick_ros.launch" /-->
<!-- Launch parser -->
<node name="parser" pkg="joystick_ros" type="parser" />
<!-- Launch position_ctrl -->
<node name="position_ctrl" pkg="joystick_ros" type="position_ctrl" />
<!-- Launch readSerial -->
<node name="readSerial" pkg="joystick_ros" type="readSerial" />
</launch>

View File

@ -0,0 +1,71 @@
<?xml version="1.0"?>
<package format="2">
<name>joystick_ros</name>
<version>0.0.0</version>
<description>The joystick_ros package</description>
<!-- One maintainer tag required, multiple allowed, one person per tag -->
<!-- Example: -->
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
<maintainer email="maryne-dey@todo.todo">maryne-dey</maintainer>
<!-- One license tag required, multiple allowed, one license per tag -->
<!-- Commonly used license strings: -->
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
<license>TODO</license>
<!-- Url tags are optional, but multiple are allowed, one per tag -->
<!-- Optional attribute type can be: website, bugtracker, or repository -->
<!-- Example: -->
<!-- <url type="website">http://wiki.ros.org/joystick_ros</url> -->
<!-- Author tags are optional, multiple are allowed, one per tag -->
<!-- Authors do not have to be maintainers, but could be -->
<!-- Example: -->
<!-- <author email="jane.doe@example.com">Jane Doe</author> -->
<!-- The *depend tags are used to specify dependencies -->
<!-- Dependencies can be catkin packages or system dependencies -->
<!-- Examples: -->
<!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
<!-- <depend>roscpp</depend> -->
<!-- Note that this is equivalent to the following: -->
<!-- <build_depend>roscpp</build_depend> -->
<!-- <exec_depend>roscpp</exec_depend> -->
<!-- Use build_depend for packages you need at compile time: -->
<!-- <build_depend>message_generation</build_depend> -->
<!-- Use build_export_depend for packages you need in order to build against this package: -->
<!-- <build_export_depend>message_generation</build_export_depend> -->
<!-- Use buildtool_depend for build tool packages: -->
<!-- <buildtool_depend>catkin</buildtool_depend> -->
<!-- Use exec_depend for packages you need at runtime: -->
<!-- <exec_depend>message_runtime</exec_depend> -->
<!-- Use test_depend for packages you need only for testing: -->
<!-- <test_depend>gtest</test_depend> -->
<!-- Use doc_depend for packages you need only for building documentation: -->
<!-- <doc_depend>doxygen</doc_depend> -->
<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>
<build_depend>serial</build_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>rospy</build_export_depend>
<build_export_depend>std_msgs</build_export_depend>
<build_export_depend>serial</build_export_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_depend>
<exec_depend>std_msgs</exec_depend>
<exec_depend>serial</exec_depend>
<!-- The export tag contains other, unspecified, tags -->
<export>
<!-- Other tools can request additional information be placed here -->
</export>
</package>

View File

@ -0,0 +1,48 @@
#include <ros/ros.h>
#include <std_msgs/String.h>
#include <std_msgs/Float32MultiArray.h>
#include <string>
// Declare global variables to store Axis values
float axis0_value = 0.0;
float axis1_value = 0.0;
ros::Publisher axis_values_pub;
void serial_data_callback(const std_msgs::String::ConstPtr& msg) {
// Parse received string message
std::string data_str = msg->data;
if (data_str.find("Axis0") != std::string::npos) {
// Extract value for Axis0
axis0_value = std::stof(data_str.substr(data_str.find(":") + 1));
} else if (data_str.find("Axis1") != std::string::npos) {
// Extract value for Axis1
axis1_value = std::stof(data_str.substr(data_str.find(":") + 1));
}
// If both Axis0 and Axis1 values are available, publish them together
if (axis0_value != 0.0 && axis1_value != 0.0) {
std_msgs::Float32MultiArray float_array_msg;
float_array_msg.data.push_back(axis0_value);
float_array_msg.data.push_back(axis1_value);
axis_values_pub.publish(float_array_msg);
}
}
int main(int argc, char** argv) {
// Initialize ROS node
ros::init(argc, argv, "serial_data_parser");
ros::NodeHandle nh;
// Initialize publisher for Axis values
axis_values_pub = nh.advertise<std_msgs::Float32MultiArray>("axis_values", 10);
// Subscribe to serial data topic
ros::Subscriber sub = nh.subscribe("serial_data", 10, serial_data_callback);
// Spin ROS node
ros::spin();
return 0;
}

View File

@ -0,0 +1,70 @@
#include <ros/ros.h>
#include <std_msgs/Float32MultiArray.h>
#include <geometry_msgs/Point.h>
// Constants
const float DEAD_ZONE = 5.0; // Dead zone in percentage (0 to 100)
const float MAX_SPEED = 1.0; // Maximum speed of the plate
// Global variables
float y_position = 0.0; // Initial y position
float prev_time = 0.0; // Previous time
float direction = 0.0; // Direction of movement
void joystick_axis_callback(const std_msgs::Float32MultiArray::ConstPtr& msg) {
// Extract joystick x and y positions
float x_joystick = msg->data[0];
float y_joystick = msg->data[1];
// Determine direction based on joystick position
if (std::abs(x_joystick) < DEAD_ZONE) {
direction = 0.0; // Joystick in dead zone, no movement
} else {
direction = (x_joystick > 0) ? 1.0 : -1.0; // Joystick outside dead zone, set direction accordingly
}
// Calculate speed based on joystick position
float speed = MAX_SPEED * std::abs(x_joystick) / 100.0;
// Calculate time elapsed since last callback
float current_time = ros::Time::now().toSec();
float time_elapsed = current_time - prev_time;
// Calculate change in y position
y_position = y_position + time_elapsed * speed * direction;
// Store current time for next iteration
prev_time = current_time;
// Publish robot position in a point format
geometry_msgs::Point position_cmd;
position_cmd.x = 65.0; // Fixed x-coordinate
position_cmd.y = y_position;
position_cmd.z = 0.0; // Assuming z-coordinate is not used
// Publish position command
ros::NodeHandle nh;
ros::Publisher position_cmd_pub = nh.advertise<geometry_msgs::Point>("/position_cmd", 10);
position_cmd_pub.publish(position_cmd);
}
int main(int argc, char** argv) {
// Initialize ROS node
ros::init(argc, argv, "joystick_to_robot_converter");
ros::NodeHandle nh;
// Subscribe to joystick axis values topic
ros::Subscriber joystick_sub = nh.subscribe("joystick_axis_values", 10, joystick_axis_callback);
// Initialize y position
y_position = 0.0;
// Initialize previous time
prev_time = ros::Time::now().toSec();
// Spin ROS node
ros::spin();
return 0;
}

View File

@ -0,0 +1,46 @@
#include <ros/ros.h>
#include <std_msgs/String.h>
#include <string>
#include <serial/serial.h> // Make sure to include the serial library, install using "sudo apt install ros-$ROS_DISTRO-serial"
void readSerial(const std::string& port, uint32_t baud_rate) {
serial::Serial ser;
ser.setPort(port);
ser.setBaudrate(baud_rate);
try {
ser.open();
} catch (const std::exception& e) {
ROS_ERROR_STREAM("Failed to open serial port " << port << ": " << e.what());
return;
}
ros::NodeHandle nh;
ros::Publisher serial_pub = nh.advertise<std_msgs::String>("serial_data", 10);
ROS_INFO_STREAM("Reading from serial port " << port);
while (ros::ok()) {
if (ser.available()) {
std_msgs::String msg;
msg.data = ser.readline();
ROS_INFO_STREAM("Received data: " << msg.data);
serial_pub.publish(msg);
}
ros::spinOnce();
}
ser.close();
}
int main(int argc, char** argv) {
ros::init(argc, argv, "serial_reader");
std::string port = "/dev/ttyACM0"; // Get serial port from command-line argument
uint32_t baud_rate = 9600; // Convert string to integer
readSerial(port, baud_rate);
return 0;
}

View File

@ -0,0 +1,241 @@
cmake_minimum_required(VERSION 3.0.2)
project(poppy_ros)
## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)
set (OpenCV_DIR "/usr/lib/opencv")
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs
# message_generation
)
find_package(OpenCV REQUIRED COMPONENTS
core
)
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)
## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()
################################################
## Declare ROS messages, services and actions ##
################################################
## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
## * add a build_depend tag for "message_generation"
## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
## * If MSG_DEP_SET isn't empty the following dependency has been pulled in
## but can be declared for certainty nonetheless:
## * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
## * add "message_generation" and every package in MSG_DEP_SET to
## find_package(catkin REQUIRED COMPONENTS ...)
## * add "message_runtime" and every package in MSG_DEP_SET to
## catkin_package(CATKIN_DEPENDS ...)
## * uncomment the add_*_files sections below as needed
## and list every .msg/.srv/.action file to be processed
## * uncomment the generate_messages entry below
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
## Generate messages in the 'msg' folder
# add_message_files(
# FILES
# Message1.msg
# Message2.msg
# )
## Generate services in the 'srv' folder
# add_service_files(
# FILES
# Service1.srv
# Service2.srv
# )
#add_service_files(
# FILES
# ik.srv
#)
## Generate actions in the 'action' folder
# add_action_files(
# FILES
# Action1.action
# Action2.action
# )
## Generate added messages and services with any dependencies listed here
# generate_messages(
# DEPENDENCIES
# std_msgs
# )
#generate_messages(
# DEPENDENCIES
# std_msgs
#)
################################################
## Declare ROS dynamic reconfigure parameters ##
################################################
## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
## * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
## * add "dynamic_reconfigure" to
## find_package(catkin REQUIRED COMPONENTS ...)
## * uncomment the "generate_dynamic_reconfigure_options" section below
## and list every .cfg file to be processed
## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
# cfg/DynReconf1.cfg
# cfg/DynReconf2.cfg
# )
###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
INCLUDE_DIRS include
LIBRARIES poppy_ros
CATKIN_DEPENDS roscpp rospy std_msgs
#DEPENDS system_lib
)
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
/home/alexandre/Software/toolkit-dynamixel/include
/home/alexandre/Software/toolkit-kinematics/include
/home/alexandre/Software/toolkit-dynamixel
/home/alexandre/Software/toolkit-kinematics
${OpenCV_INCLUDE_DIRS}
/home/alexandre/Software/eigen/Eigen/include
/home/alexandre/Software/eigen/Eigen
${catkin_INCLUDE_DIRS}
)
## Declare a C++ library
# add_library(${PROJECT_NAME}
# src/${PROJECT_NAME}/poppy_ros.cpp
# )
## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
# add_executable(${PROJECT_NAME}_node src/poppy_ros_node.cpp)
add_executable(poppy_ros src/poppy_ros.cpp /home/alexandre/Software/toolkit-dynamixel/src/DynamixelHandler.cpp)
add_executable(poppy_test src/poppy_test.cpp)
add_executable(poppy_pong_iv src/poppy_pong_iv.cpp)
add_executable(poppy_track_x src/poppy_track_x.cpp)
#add_executable(ik_server src/ik_server.cpp /home/alexandre/Software/toolkit-kinematics/src/Kinematics.cpp /home/alexandre/Software/toolkit-kinematics/src/RotationMatrix.cpp /home/alexandre/Software/toolkit-kinematics/src/TranslationMatrix.cpp /home/alexandre/Software/toolkit-kinematics/src/TransformationMatrix.cpp)
#add_executable(ik_client src/ik_client.cpp)
add_executable(sim_poppy_joint src/sim_poppy_joint.cpp)
## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")
## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Specify libraries to link a library or executable target against
# target_link_libraries(${PROJECT_NAME}_node
# ${catkin_LIBRARIES}
# )
target_link_libraries(poppy_ros dxl_x64_cpp rt ${catkin_LIBRARIES})
target_link_libraries(poppy_test ${catkin_LIBRARIES})
target_link_libraries(poppy_pong_iv ${catkin_LIBRARIES})
target_link_libraries(poppy_track_x ${catkin_LIBRARIES})
#target_link_libraries(ik_server ${catkin_LIBRARIES} ${OpenCV_LIBS})
#target_link_libraries(ik_client ${catkin_LIBRARIES})
target_link_libraries(sim_poppy_joint ${catkin_LIBRARIES})
#############
## Install ##
#############
# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
# scripts/my_python_script
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )
## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
# FILES_MATCHING PATTERN "*.h"
# PATTERN ".svn" EXCLUDE
# )
## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
# # myfile1
# # myfile2
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )
#############
## Testing ##
#############
## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_poppy_ros.cpp)
# if(TARGET ${PROJECT_NAME}-test)
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()
## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

View File

@ -0,0 +1,68 @@
<?xml version="1.0"?>
<package format="2">
<name>poppy_ros</name>
<version>0.0.0</version>
<description>The poppy_ros package</description>
<!-- One maintainer tag required, multiple allowed, one person per tag -->
<!-- Example: -->
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
<maintainer email="lucas@todo.todo">lucas</maintainer>
<!-- One license tag required, multiple allowed, one license per tag -->
<!-- Commonly used license strings: -->
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
<license>TODO</license>
<!-- Url tags are optional, but multiple are allowed, one per tag -->
<!-- Optional attribute type can be: website, bugtracker, or repository -->
<!-- Example: -->
<!-- <url type="website">http://wiki.ros.org/poppy_ros</url> -->
<!-- Author tags are optional, multiple are allowed, one per tag -->
<!-- Authors do not have to be maintainers, but could be -->
<!-- Example: -->
<!-- <author email="jane.doe@example.com">Jane Doe</author> -->
<!-- The *depend tags are used to specify dependencies -->
<!-- Dependencies can be catkin packages or system dependencies -->
<!-- Examples: -->
<!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
<!-- <depend>roscpp</depend> -->
<!-- Note that this is equivalent to the following: -->
<!-- <build_depend>roscpp</build_depend> -->
<!-- <exec_depend>roscpp</exec_depend> -->
<!-- Use build_depend for packages you need at compile time: -->
<!-- <build_depend>message_generation</build_depend> -->
<!-- Use build_export_depend for packages you need in order to build against this package: -->
<!-- <build_export_depend>message_generation</build_export_depend> -->
<!-- Use buildtool_depend for build tool packages: -->
<!-- <buildtool_depend>catkin</buildtool_depend> -->
<!-- Use exec_depend for packages you need at runtime: -->
<!-- <exec_depend>message_runtime</exec_depend> -->
<!-- Use test_depend for packages you need only for testing: -->
<!-- <test_depend>gtest</test_depend> -->
<!-- Use doc_depend for packages you need only for building documentation: -->
<!-- <doc_depend>doxygen</doc_depend> -->
<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>rospy</build_export_depend>
<build_export_depend>std_msgs</build_export_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_depend>
<exec_depend>std_msgs</exec_depend>
<!-- The export tag contains other, unspecified, tags -->
<export>
<!-- Other tools can request additional information be placed here -->
</export>
</package>

View File

@ -0,0 +1,12 @@
<!-- poppy_launch.launch -->
<launch>
<!-- Launch poppy_ros -->
<!--include file="$(find poppy_ros)/poppy_ros.launch" /-->
<!-- Launch poppy_pong_iv -->
<node name="poppy_ik" pkg="poppy_ros" type="poppy_pong_iv" />
<!-- Launch poppy_ros -->
<node name="poppy_ros" pkg="poppy_ros" type="poppy_ros" />
</launch>

View File

@ -0,0 +1,105 @@
#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "geometry_msgs/Point.h"
#include <std_msgs/MultiArrayLayout.h>
#include <std_msgs/MultiArrayDimension.h>
#include <std_msgs/Float32MultiArray.h>
#include <array> // Inclure la bibliothèque std::array pour déclarer des tableaux statiques
#include <cmath> // Inclure la bibliothèque cmath pour atan2
// Global variables
float _fps = 10.0f; // Hz
int _nbJoints = 6;
float _minJointCmd = 0;
float _maxJointCmd = 1023;
float _minJointAngle = -180.0f;
float _maxJointAngle = 180.0f;
float L1 = 65;
float L2 = 55;
float angleBase = 100;
bool hitting_need = false;
ros::Publisher _jointPositionPublisher;
float get_q2(float x, float y)
{
float q2; // Déclarer un tableau statique de 2 éléments de type float
q2 = acos((x * x + y * y - L1 * L1 - L2 * L2) / (2 * L1 * L2));
return q2;
}
float get_q1(float x, float y)
{
float q1;
float q2 = get_q2(x, y);
q1 = atan2(y, x) - atan2(L2 * sin(q2), L1 + L2 * cos(q2));
return q1;
}
void posCMDCallback(const geometry_msgs::Point& joint_pos)
{
float pos_x = joint_pos.x;
float pos_y = joint_pos.y;
if (hitting_need == true)
{
pos_x += 30;
}
if (sqrt(pow(pos_x, 2) + pow(joint_pos.y, 2)) <= 120)
{
geometry_msgs::Twist joint_cmd;
float q1 = get_q1(pos_x, joint_pos.y);
float q2 = get_q2(pos_x, joint_pos.y);
// stores them into a msg
joint_cmd.linear.x = q1*(180.0f/3.141592f);
joint_cmd.linear.y = angleBase;
joint_cmd.linear.z = q2*(180.0f/3.141592f);
joint_cmd.angular.x = (-q1-q2)*(180.0f/3.141592f); // end-effector orientation
// publish the Twist message to the joint_position topic
_jointPositionPublisher.publish(joint_cmd);
}
}
void hittingCommand(const geometry_msgs::Point& trigger_signal) {
if (trigger_signal.z == 2){
hitting_need = true;
} else {
hitting_need = false;
}
}
int main(int argc, char** argv)
{
// create a node called poppy_ik
ros::init(argc, argv, "poppy_ik");
// create a node handle
ros::NodeHandle nh;
// create a publisher to joint_cmd topic
_jointPositionPublisher = nh.advertise<geometry_msgs::Twist>("joint_cmd", 1);
// create a subscriber to position_cmd
ros::Subscriber sub = nh.subscribe("position_cmd", 1, posCMDCallback);
ros::Subscriber sub_trigger = nh.subscribe("trigger", 1, hittingCommand);
// create a loop rate
ros::Rate loopRate(_fps);
ROS_INFO("===Launching Poppy node===");
// loop until Ctrl+C is pressed or ROS connectivity issues
while(ros::ok())
{
// spin once to let the process handle callback ad key stroke
ros::spinOnce();
// sleep the right amout of time to comply with _fps
loopRate.sleep();
}
return 0;
}

View File

@ -0,0 +1,107 @@
#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "DynamixelHandler.h"
// Global variables
float _fps = 10.0f; // Hz
DynamixelHandler _oDxlHandler;
ros::Publisher _jointPositionPublisher;
std::string _poppyDxlPortName = "/dev/ttyUSB0";
float _poppyDxlProtocol = 2.0;
int _poppyDxlBaudRate = 1000000;
int _nbJoints = 6;
float _minJointCmd = 0;
float _maxJointCmd = 1023;
float _minJointAngle = -180.0f;
float _maxJointAngle = 180.0f;
// create vector unit 16_t
std::vector<uint16_t> jointVec;
int convertAnglesToJointCmd(float fJointAngle)
{
// y = ax + b
float a = (_maxJointCmd-_minJointCmd) / (_maxJointAngle - _minJointAngle);
float b = _minJointCmd - a * _minJointAngle;
float jointCmd = a * fJointAngle + b;
return (int)jointCmd;
}
void jointCMDCallback(const geometry_msgs::Twist& joint_cmd)
{
jointVec.clear();
//fill it w joint_cmd_values
jointVec.push_back(convertAnglesToJointCmd(joint_cmd.linear.x));
jointVec.push_back(convertAnglesToJointCmd(joint_cmd.linear.y));
jointVec.push_back(convertAnglesToJointCmd(joint_cmd.linear.z));
jointVec.push_back(convertAnglesToJointCmd(joint_cmd.angular.x));
jointVec.push_back(0.0);
jointVec.push_back(0.0);
//call sendTargetJOintPosition(vector) of DxlHandler
_oDxlHandler.sendTargetJointPosition(jointVec);
}
int main(int argc, char** argv)
{
// create a node called poppy_ros
ros::init(argc, argv, "poppy_ros", ros::init_options::NoSigintHandler);
//ros::init(argc, argv, "autopilot");
// create a node handle
ros::NodeHandle nh;
// create a publisher to joint_position topic
_jointPositionPublisher = nh.advertise<geometry_msgs::Twist>("joint_position", 1);
//create a subscriber
ros::Subscriber sub = nh.subscribe("joint_cmd",1, jointCMDCallback);
// create a loop rate
ros::Rate loopRate(_fps);
// create a Twist message
geometry_msgs::Twist jointPositionMsg;
std::cout << "===Initialization of the Dynamixel Motor communication====" << std::endl;
_oDxlHandler.setDeviceName(_poppyDxlPortName);
_oDxlHandler.setProtocolVersion(_poppyDxlProtocol);
_oDxlHandler.openPort();
_oDxlHandler.setBaudRate(_poppyDxlBaudRate);
_oDxlHandler.enableTorque(false);
std::cout << std::endl;
ROS_INFO("===Launching Poppy node===");
// loop until Ctrl+C is pressed or ROS connectivity issues
while(ros::ok())
{
//===RETRIEVE Dynamixel Motor positions====
std::vector<uint16_t> l_vCurrentJointPosition;
bool bIsReadSuccessfull = _oDxlHandler.readCurrentJointPosition(l_vCurrentJointPosition);
// stores them into a msg
if (bIsReadSuccessfull)
{
jointPositionMsg.linear.x = l_vCurrentJointPosition[0];
jointPositionMsg.linear.y = l_vCurrentJointPosition[1];
jointPositionMsg.linear.z = l_vCurrentJointPosition[2];
jointPositionMsg.angular.x = l_vCurrentJointPosition[3];
}
// publish the Twist message to the joint_position topic
_jointPositionPublisher.publish(jointPositionMsg);
// spin once to let the process handle callback ad key stroke
ros::spinOnce();
// sleep the right amout of time to comply with _fps
loopRate.sleep();
}
_oDxlHandler.enableTorque(false);
_oDxlHandler.closePort();
return 0;
}

View File

@ -0,0 +1,60 @@
#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
ros::Publisher _jointPositionPublisher;
int main(int argc, char** argv)
{
// create a node called poppy_ros
ros::init(argc, argv, "poppy_ros_test");
//ros::init(argc, argv, "autopilot");
// create a node handle
ros::NodeHandle nh;
// create a publisher to joint_position topic
_jointPositionPublisher = nh.advertise<geometry_msgs::Twist>("joint_cmd", 1);
// create a loop rate
ros::Rate loopRate(1);
// create a Twist message
geometry_msgs::Twist jointPositionMsg;
int x=0;
ROS_INFO("===Launching Poppy node===");
// loop until Ctrl+C is pressed or ROS connectivity issues
while(ros::ok())
{
// stores them into a msg
if (x != 180)
{
jointPositionMsg.linear.x = x;
jointPositionMsg.linear.y = 100;
jointPositionMsg.linear.z = x;
jointPositionMsg.angular.x = x;
x+=10;
}
else if(x==180)
{
x=0;
}
// publish the Twist message to the joint_position topic
_jointPositionPublisher.publish(jointPositionMsg);
// spin once to let the process handle callback ad key stroke
ros::spinOnce();
// sleep the right amout of time to comply with _fps
loopRate.sleep();
}
return 0;
}

View File

@ -0,0 +1,72 @@
#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "geometry_msgs/Point.h"
#include <std_msgs/MultiArrayLayout.h>
#include <std_msgs/MultiArrayDimension.h>
#include <std_msgs/Float32MultiArray.h>
#include <array> // Inclure la bibliothèque std::array pour déclarer des tableaux statiques
#include <cmath> // Inclure la bibliothèque cmath pour atan2
// Global variables
float _fps = 10.0f; // Hz
ros::Publisher _jointPositionPublisher;
float std_pos = 50.0f;
float halfwidth = 0;
float length = 0;
void posCMDCallback(const geometry_msgs::Point& ballPos)
{
geometry_msgs::Point joint_pos;
// stores them into a msg
joint_pos.x = std_pos;
joint_pos.y = ballPos.y*1.3;
//ROS_INFO(ballPos.x + " and " + halfwidth);
// publish the Twist message to the joint_position topic
_jointPositionPublisher.publish(joint_pos);
}
void width_callback(const geometry_msgs::Point& terrainSize)
{
halfwidth = terrainSize.x/2.f;
length = terrainSize.y;
}
int main(int argc, char** argv)
{
//ros::init(argc, argv, "autopilot");
// create a node called poppy_ros
ros::init(argc, argv, "poppy_track_ball");
// create a node handle
ros::NodeHandle nh;
// create a publisher to joint_position topic
_jointPositionPublisher = nh.advertise<geometry_msgs::Point>("position_cmd", 1);
//create a subscriber width_length
ros::Subscriber sub = nh.subscribe("ball_coordinates",1, posCMDCallback);
ros::Subscriber sub2 = nh.subscribe("width_length",1, width_callback);
// create a loop rate
ros::Rate loopRate(_fps);
ROS_INFO("===Launching Poppy node===");
// loop until Ctrl+C is pressed or ROS connectivity issues
while(ros::ok())
{
// spin once to let the process handle callback ad key stroke
ros::spinOnce();
// sleep the right amout of time to comply with _fps
loopRate.sleep();
}
return 0;
}

View File

@ -0,0 +1,53 @@
#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "sensor_msgs/JointState.h"
std::vector<double> jointVec;
void jointCMDCallback(const geometry_msgs::Twist& joint_cmd)
{
jointVec.clear();
//fill it w joint_cmd_values
jointVec.push_back(joint_cmd.linear.x);
jointVec.push_back(joint_cmd.linear.y);
jointVec.push_back(joint_cmd.linear.z);
jointVec.push_back(joint_cmd.angular.x);
jointVec.push_back(joint_cmd.angular.y);
jointVec.push_back(joint_cmd.angular.z);
}
double deg2rad(double angle)
{
return -angle / 180.0 * M_PI;
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "poppy_ros", ros::init_options::NoSigintHandler);
// create a node handle
ros::NodeHandle nh;
//create a subscriber
ros::Subscriber sub = nh.subscribe("joint_cmd",1, jointCMDCallback);
// create a loop rate
ros::Rate loopRate(10);
ROS_INFO("===Launching Poppy node 2===");
ros::Publisher jointCmdPublisher = nh.advertise<sensor_msgs::JointState>("joint_states", 1);
std::vector<std::string> jointCmdNameArray = {"m1", "m2", "m3", "m4", "m5", "m6"};
while (ros::ok())
{
sensor_msgs::JointState jointCmdMsg;
jointCmdMsg.header.stamp = ros::Time::now();
jointCmdMsg.header.seq++;
jointCmdMsg.position = jointVec;
jointCmdMsg.name = jointCmdNameArray;
jointCmdPublisher.publish(jointCmdMsg);
ROS_INFO("===data published===");
ros::spinOnce();
loopRate.sleep();
}
return 0;
}

View File

@ -0,0 +1,45 @@
//Constants
#define NUM_JOY 2
#define MIN_VAL 0
#define MAX_VAL 1023
//Parameters
const int joyPin[2] = {A0, A1};
const int joyOffset = 7; // from the calibration phase
//Variables
int joyVal [NUM_JOY] = {0, 0};
void setup() {
//Init Serial USB
Serial.begin(9600);
Serial.println(F("Initialize System"));
//Init Joystick
for (int i = 0; i < NUM_JOY; i++)
{
pinMode(joyPin[i], INPUT);
}
}
void loop() {
readJoystick();
delay(500);
}
void readJoystick( ) { /* function readJoystick */
////Test routine for Joystick
for (int i = 0; i < NUM_JOY; i++) {
joyVal[i] = analogRead(joyPin[i]);
// Serial.print(F("joy")); Serial.print(i); Serial.print(F(" : ")); Serial.println(joyVal[i]);
}
Serial.println("--------- Joystick position ---------");
for (int i = 0; i < NUM_JOY; i++) {
Serial.print(F("Axis")), Serial.print(i); Serial.print(F(" : ")); Serial.println(joyRawToPhys(joyVal[i]));
}
}
float joyRawToPhys(int raw) { /* function joyRawToPhys */
////Joystick conversion rule
float phys = map(raw, MIN_VAL, MAX_VAL, -100, 100) + joyOffset;
return phys;
}