2D revision
|
|
@ -0,0 +1,130 @@
|
|||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
def Planer_Calibration(cam, num_images):
|
||||
# Initialize camera objects
|
||||
cap = cv.VideoCapture(cam)
|
||||
|
||||
# Check if cameras are opened successfully
|
||||
if not (cap.isOpened()):
|
||||
print("Error: Could not open cameras")
|
||||
return
|
||||
|
||||
objpoints = [] # 3D object points
|
||||
imgpoints = [] # 2D image points for camera 1
|
||||
# Prepare object points, assuming a chessboard with 9 by 6 squares of 30mm
|
||||
square_size = 30 # in millimeters
|
||||
row, col = 8, 5
|
||||
objp = np.zeros((row * col, 3), np.float32)
|
||||
objp[:, :2] = np.mgrid[0:row, 0:col].T.reshape(-1, 2) * square_size
|
||||
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
|
||||
i = 0
|
||||
while i < num_images:
|
||||
ret, frame = cap.read()
|
||||
|
||||
height, width, _ = frame.shape # Get image dimensions
|
||||
|
||||
if not (ret):
|
||||
print("Error: Could not read frames")
|
||||
break
|
||||
|
||||
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
# Detect chessboard corners in both images
|
||||
ret, corners = cv.findChessboardCorners(gray, (row, col), None)
|
||||
if ret:
|
||||
# Refine corner positions
|
||||
corners = cv.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
|
||||
objpoints.append(objp)
|
||||
imgpoints.append(corners)
|
||||
|
||||
i += 1
|
||||
|
||||
# Draw and display corners (optional)
|
||||
frame = cv.drawChessboardCorners(frame, (row, col), corners, ret)
|
||||
cv.imshow('Calibrationg', frame)
|
||||
cv.waitKey(500)
|
||||
else:
|
||||
cv.imshow('No Board', frame)
|
||||
cv.waitKey(1)
|
||||
|
||||
return objpoints, imgpoints, width, height
|
||||
|
||||
|
||||
def findPositions(cam, duration):
|
||||
cap = cv.VideoCapture(cam)
|
||||
i = 0
|
||||
while i < duration:
|
||||
ret, frame = cap.read()
|
||||
frame = cv.undistort(frame, mtx, dist)
|
||||
point = detect_cube(frame, show_flag = True)
|
||||
cv.circle(frame, (int(point[0]), int(point[1])), 2, (0, 0, 255), -1)
|
||||
cv.imshow('Frame', frame)
|
||||
cv.waitKey(1)
|
||||
|
||||
key = cv.waitKey(5) & 0xFF
|
||||
if key == ord('s'):
|
||||
if i == 0:
|
||||
if offset == 0:
|
||||
offset = point
|
||||
else:
|
||||
appended_array = np.vstack((offset, point))
|
||||
# Calculate the average along the first axis (axis=0)
|
||||
offset = np.mean(appended_array, axis=0)
|
||||
|
||||
i += 1
|
||||
return
|
||||
|
||||
|
||||
def detect_cube(image, show_flag):
|
||||
# Convert image to HSV color space
|
||||
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
|
||||
|
||||
# Define lower and upper bounds for red color in HSV
|
||||
# Red range
|
||||
#lower = np.array([0, 100, 100])
|
||||
#upper = np.array([5, 255, 255])
|
||||
# Yellow range
|
||||
#lower = np.array([25, 100, 100])
|
||||
#upper = np.array([35, 255, 255])
|
||||
# Green range
|
||||
lower = np.array([40, 50, 50])
|
||||
upper = np.array([75, 255, 255])
|
||||
# Blue range
|
||||
#lower = np.array([100, 100, 100])
|
||||
#upper = np.array([110, 255, 255])
|
||||
|
||||
# Threshold the HSV image to get only red colors
|
||||
mask = cv.inRange(hsv, lower, upper)
|
||||
# Find non-zero pixel coordinates
|
||||
non_zero_pixels = cv.findNonZero(mask)
|
||||
|
||||
# Check if non-zero pixels are found
|
||||
if non_zero_pixels is not None:
|
||||
# Calculate the average position and extract x and y coordinates of the average position
|
||||
average_position = np.mean(non_zero_pixels, axis=0)
|
||||
avg_x, avg_y = average_position[0]
|
||||
else: avg_x, avg_y = 0, 0
|
||||
|
||||
if show_flag :
|
||||
# Apply the mask to the original image
|
||||
masked_image = cv.bitwise_and(image, image, mask=mask)
|
||||
cv.circle(masked_image, (int(avg_x), int(avg_y)), 2, (0, 0, 255), -1)
|
||||
cv.imshow('Remaining Image', masked_image)
|
||||
cv.waitKey(1)
|
||||
|
||||
if 0: # Calculate the average value for each channel (Hue, Saturation, Value) across non-zero pixels
|
||||
non_zero_indices = np.nonzero(mask)
|
||||
non_zero_pixel_values = hsv[non_zero_indices]
|
||||
avg = np.mean(non_zero_pixel_values, axis=0)
|
||||
print(avg)
|
||||
return (avg_x, avg_y)
|
||||
|
||||
cam = 1
|
||||
|
||||
objpoints, imgpoints, width, height = Planer_Calibration(cam, num_images = 20)
|
||||
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, (width, height), None, None)
|
||||
print(mtx, dist)
|
||||
|
||||
findPositions(cam, duration = 10)
|
||||
|
After Width: | Height: | Size: 67 KiB |
|
After Width: | Height: | Size: 80 KiB |
|
After Width: | Height: | Size: 73 KiB |
|
After Width: | Height: | Size: 65 KiB |
|
After Width: | Height: | Size: 69 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 63 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 73 KiB |
|
After Width: | Height: | Size: 81 KiB |
|
After Width: | Height: | Size: 67 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 65 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
Before Width: | Height: | Size: 59 KiB After Width: | Height: | Size: 66 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 75 KiB |
|
After Width: | Height: | Size: 77 KiB |
|
After Width: | Height: | Size: 75 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 74 KiB |
|
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 63 KiB |
|
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 59 KiB |
|
Before Width: | Height: | Size: 68 KiB After Width: | Height: | Size: 68 KiB |
|
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 68 KiB |
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 79 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 64 KiB |
|
After Width: | Height: | Size: 62 KiB |
|
After Width: | Height: | Size: 56 KiB |
|
After Width: | Height: | Size: 56 KiB |
|
After Width: | Height: | Size: 62 KiB |
|
After Width: | Height: | Size: 67 KiB |
|
After Width: | Height: | Size: 64 KiB |
|
After Width: | Height: | Size: 67 KiB |
|
After Width: | Height: | Size: 70 KiB |
|
After Width: | Height: | Size: 67 KiB |
|
After Width: | Height: | Size: 66 KiB |
|
After Width: | Height: | Size: 63 KiB |
|
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 60 KiB |
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 62 KiB |
|
Before Width: | Height: | Size: 68 KiB After Width: | Height: | Size: 60 KiB |
|
Before Width: | Height: | Size: 67 KiB After Width: | Height: | Size: 64 KiB |
|
Before Width: | Height: | Size: 65 KiB After Width: | Height: | Size: 68 KiB |
|
Before Width: | Height: | Size: 61 KiB After Width: | Height: | Size: 69 KiB |
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 71 KiB |
|
Before Width: | Height: | Size: 77 KiB After Width: | Height: | Size: 75 KiB |
|
Before Width: | Height: | Size: 81 KiB After Width: | Height: | Size: 73 KiB |
|
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 73 KiB |
|
Before Width: | Height: | Size: 67 KiB After Width: | Height: | Size: 75 KiB |
|
Before Width: | Height: | Size: 67 KiB After Width: | Height: | Size: 73 KiB |
|
After Width: | Height: | Size: 66 KiB |
|
After Width: | Height: | Size: 68 KiB |
|
After Width: | Height: | Size: 69 KiB |
|
After Width: | Height: | Size: 70 KiB |
|
After Width: | Height: | Size: 64 KiB |
|
After Width: | Height: | Size: 63 KiB |
93
vision.py
|
|
@ -2,6 +2,8 @@ import numpy as np
|
|||
import cv2 as cv
|
||||
import glob
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
def find_camera(find_flag):
|
||||
if find_flag:
|
||||
|
|
@ -23,7 +25,7 @@ def find_camera(find_flag):
|
|||
cam2 = cam_available[1]
|
||||
else:
|
||||
cam1 = 1
|
||||
cam2 = 2
|
||||
cam2 = 0
|
||||
print(f"Cameras number used : {cam1} & {cam2}")
|
||||
return cam1, cam2
|
||||
def img_capture(camera_num):
|
||||
|
|
@ -40,7 +42,7 @@ def img_capture(camera_num):
|
|||
exit()
|
||||
i = 0
|
||||
# Capture and save 12 images
|
||||
while i < 6:
|
||||
while i < 15:
|
||||
# Capture a frame from the camera
|
||||
ret, frame = cap.read()
|
||||
|
||||
|
|
@ -73,8 +75,8 @@ def single_calibration(camera_num, img_cap):
|
|||
|
||||
# Prepare object points, assuming a chessboard with 9 by 6 squares of 30mm
|
||||
square_size = 30 # in millimeters
|
||||
row = 9
|
||||
col = 6
|
||||
row = 8
|
||||
col = 5
|
||||
objp = np.zeros((row * col, 3), np.float32)
|
||||
objp[:, :2] = np.mgrid[0:row, 0:col].T.reshape(-1, 2) * square_size
|
||||
|
||||
|
|
@ -101,9 +103,10 @@ def single_calibration(camera_num, img_cap):
|
|||
|
||||
cv.destroyAllWindows()
|
||||
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, (gray.shape[1], gray.shape[0]), None, None)
|
||||
print(mtx, dist)
|
||||
return mtx, dist
|
||||
|
||||
def stereo_capture():
|
||||
def stereo_capture(mtx1, dist1, mtx2, dist2):
|
||||
# Open two video capture objects for each camera
|
||||
cap_left = cv.VideoCapture(cam1) # Adjust the index if needed
|
||||
cap_right = cv.VideoCapture(cam2) # Adjust the index if needed
|
||||
|
|
@ -118,11 +121,14 @@ def stereo_capture():
|
|||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
frame_counter = 0
|
||||
while frame_counter < 6:
|
||||
while frame_counter < 15:
|
||||
# Read frames from both cameras
|
||||
ret_left, frame_left = cap_left.read()
|
||||
ret_right, frame_right = cap_right.read()
|
||||
|
||||
frame_left = cv.undistort(frame_left, mtx1, dist1)
|
||||
frame_right = cv.undistort(frame_right, mtx2, dist2)
|
||||
|
||||
# Break the loop if either of the cameras fails to read a frame
|
||||
if not ret_left or not ret_right:
|
||||
print("Error: Couldn't read frames from one or both cameras.")
|
||||
|
|
@ -150,7 +156,7 @@ def stereo_capture():
|
|||
cv.destroyAllWindows()
|
||||
return
|
||||
def stereo_calibration(mtx1, dist1, mtx2, dist2, frames_folder, stereo_capture_flag):
|
||||
if stereo_capture_flag: stereo_capture()
|
||||
if stereo_capture_flag: stereo_capture(mtx1, dist1, mtx2, dist2)
|
||||
# Read the synched frames
|
||||
images_names = glob.glob(frames_folder)
|
||||
images_names = sorted(images_names)
|
||||
|
|
@ -169,8 +175,8 @@ def stereo_calibration(mtx1, dist1, mtx2, dist2, frames_folder, stereo_capture_f
|
|||
#change this if stereo calibration not good.
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.0001)
|
||||
|
||||
rows = 6 #number of checkerboard rows.
|
||||
columns = 9 #number of checkerboard columns.
|
||||
rows = 5 #number of checkerboard rows.
|
||||
columns = 8 #number of checkerboard columns.
|
||||
world_scaling = 30 #change this to the real world square size. Or not.
|
||||
|
||||
#coordinates of squares in the checkerboard world space
|
||||
|
|
@ -215,11 +221,12 @@ def stereo_calibration(mtx1, dist1, mtx2, dist2, frames_folder, stereo_capture_f
|
|||
stereocalibration_flags = cv.CALIB_FIX_INTRINSIC
|
||||
ret, CM1, dist1_bis, CM2, dist2_bis, R, T, E, F = cv.stereoCalibrate(objpoints, imgpoints_left, imgpoints_right, mtx1, dist1, mtx2, dist2, (width, height), criteria = criteria, flags = stereocalibration_flags)
|
||||
cv.destroyAllWindows()
|
||||
print(R, T)
|
||||
return R, T
|
||||
|
||||
def cub_cordinate(mtx1, dist1, mtx2, dist2, R, T):
|
||||
cap1 = cv.VideoCapture(1)
|
||||
cap2 = cv.VideoCapture(2)
|
||||
def cub_cordinate(cam1, cam2, mtx1, dist1, mtx2, dist2, R, T):
|
||||
cap1 = cv.VideoCapture(cam1)
|
||||
cap2 = cv.VideoCapture(cam2)
|
||||
|
||||
while True:
|
||||
# Capture stereo images
|
||||
|
|
@ -277,7 +284,6 @@ def cub_cordinate(mtx1, dist1, mtx2, dist2, R, T):
|
|||
cap1.release()
|
||||
cap2.release()
|
||||
cv.destroyAllWindows()
|
||||
|
||||
def detect_cube(image, show_flag):
|
||||
# Convert image to HSV color space
|
||||
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
|
||||
|
|
@ -290,11 +296,11 @@ def detect_cube(image, show_flag):
|
|||
#lower = np.array([25, 100, 100])
|
||||
#upper = np.array([35, 255, 255])
|
||||
# Green range
|
||||
#lower = np.array([40, 80, 80])
|
||||
#upper = np.array([60, 255, 255])
|
||||
lower = np.array([40, 50, 50])
|
||||
upper = np.array([75, 255, 255])
|
||||
# Blue range
|
||||
lower = np.array([100, 100, 100])
|
||||
upper = np.array([110, 255, 255])
|
||||
#lower = np.array([100, 100, 100])
|
||||
#upper = np.array([110, 255, 255])
|
||||
|
||||
# Threshold the HSV image to get only red colors
|
||||
mask = cv.inRange(hsv, lower, upper)
|
||||
|
|
@ -321,7 +327,6 @@ def detect_cube(image, show_flag):
|
|||
avg = np.mean(non_zero_pixel_values, axis=0)
|
||||
print(avg)
|
||||
return (avg_x, avg_y)
|
||||
|
||||
def triangulate(mtx1, mtx2, R, T):
|
||||
|
||||
uvs1 = [[458, 86]]
|
||||
|
|
@ -337,7 +342,6 @@ def triangulate(mtx1, mtx2, R, T):
|
|||
#RT matrix for C2 is the R and T obtained from stereo calibration.
|
||||
RT2 = np.concatenate([R, T], axis = -1)
|
||||
P2 = mtx2 @ RT2 #projection matrix for C2
|
||||
|
||||
def project_point_to_camera2(point_cam1, mtx1, R, T, mtx2):
|
||||
# Step 1: Convert point coordinates to world coordinates in camera 1
|
||||
point_world = np.dot(np.linalg.inv(mtx1), np.append(point_cam1, 1))
|
||||
|
|
@ -349,11 +353,52 @@ def project_point_to_camera2(point_cam1, mtx1, R, T, mtx2):
|
|||
point_cam2 = point_cam2_homogeneous[:2] # Extract (x, y) coordinates
|
||||
return point_cam2
|
||||
|
||||
cam1, cam2 = find_camera(find_flag = False)
|
||||
mtx1, dist1 = single_calibration(camera_num = cam1, img_cap = True)
|
||||
mtx2, dist2 = single_calibration(camera_num = cam2, img_cap = True)
|
||||
R, T = stereo_calibration(mtx1, dist1, mtx2, dist2, 'stereo_images/*', stereo_capture_flag = True)
|
||||
def find_3d_position(mtx1, dist1, mtx2, dist2, R, T):
|
||||
cap1 = cv.VideoCapture(cam1)
|
||||
cap2 = cv.VideoCapture(cam2)
|
||||
|
||||
cub_cordinate(mtx1, dist1, mtx2, dist2, R, T)
|
||||
while True:
|
||||
# Capture stereo images
|
||||
ret1, frame1 = cap1.read()
|
||||
ret2, frame2 = cap2.read()
|
||||
if not ret1 and not ret2 : break
|
||||
|
||||
frame1 = cv.undistort(frame1, mtx1, dist1)
|
||||
frame2 = cv.undistort(frame2, mtx2, dist2)
|
||||
|
||||
# Detect red cube in both images
|
||||
point_left = detect_cube(frame1, True)
|
||||
point_right = detect_cube(frame2, True)
|
||||
|
||||
# Convert 2D points to homogeneous coordinates
|
||||
point_left = np.array([point_left[0], point_left[1]])
|
||||
point_right = np.array([point_right[0], point_right[1]])
|
||||
|
||||
# Triangulate 3D point
|
||||
P1 = np.hstack((np.eye(3), np.zeros((3, 1))))
|
||||
P2 = np.hstack((R, T))
|
||||
print(point_left.T, point_right.T)
|
||||
points_4d = cv.triangulatePoints(P1, P2, point_left.T, point_right.T)
|
||||
|
||||
# Convert homogeneous coordinates to Cartesian coordinates
|
||||
points_3d = points_4d[:3] / points_4d[3]
|
||||
|
||||
cv.circle(frame1, (int(point_left[0]), int(point_left[1])), 2, (0, 0, 255), -1)
|
||||
cv.circle(frame2, (int(point_right[0]), int(point_right[1])), 2, (0, 0, 255), -1)
|
||||
print(points_3d)
|
||||
|
||||
stereo_frame = cv.hconcat([frame1, frame2])
|
||||
cv.imshow('Stereo Frames', stereo_frame)
|
||||
cv.waitKey(500)
|
||||
|
||||
return
|
||||
|
||||
cam1, cam2 = find_camera(find_flag = False)
|
||||
mtx1, dist1 = single_calibration(camera_num = cam1, img_cap = False)
|
||||
mtx2, dist2 = single_calibration(camera_num = cam2, img_cap = False)
|
||||
R, T = stereo_calibration(mtx1, dist1, mtx2, dist2, 'stereo_images/*', stereo_capture_flag = False)
|
||||
|
||||
#cub_cordinate(cam1, cam2, mtx1, dist1, mtx2, dist2, R, T)
|
||||
find_3d_position(mtx1, dist1, mtx2, dist2, R, T)
|
||||
|
||||
print("$$$ Code Done $$$")
|
||||